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INTRODUCTION 

Everyone could observe as a little child meets with a playground swing for first time. It seems 

that the swing is very easily, without any busy, since, and it is almost obvious that this game is 

naturally given to children, maybe, from the birth. At the same time, the child, being loaded into 

the swing, would get a first small amazement – all is ready to enjoy, but this swing does not want 

to sway for some reason. Initially, someone may help him by swaying. Then, maybe not imme-

diately, but still soon enough, the understanding, how to get rid of helper and any troublesome 

custody assistants, will come: it is necessary to be simply adjusted to the rhythm and small, al-

most imperceptible, pushes are need to master the game completely. Maybe, one can remember a 

school basketball court: it is so easy to navigate through it, just holding the ball in any position 

by some “van der Waals” forces at the fingertips, and playing, thus, a split second to take the 

next tricky maneuver. Thus, the concept of resonance is very affordable intuitively almost for 

everybody.  

When the time will come not to play, but for a working activity, for example, as a mechanical 

engineer, then this is the time finally to answer on the essential question: what is the resonance? 

One can read in “Encyclopedia Britannica” the following lines: “resonance, in physics, rela-

tively large selective response of an object or a system that vibrates in step or phase, with an ex-

ternally applied oscillatory force. Resonance was first investigated in acoustical systems such as 

musical instruments and the human voice. An example of acoustical resonance is the vibration 

induced in a violin or piano string of a given pitch when a musical note of the same pitch is sung 

or played nearby...” 

The above text has an undoubted value: now it is obvious that in the case of the experience in life 

with a swing, the so-called parametric resonance is emerged, and the controlled pushes in a bas-

ketball court can be attributed to the ordinary resonance. But the mentioned above definition 

leaves some dissatisfaction: it seems that once again we have got only small and insignificant 

details, while the nature of this phenomenon has already known before the reading a priori. 

Also, somewhat is alarming in the frequently cited phrase characterizing the resonance which is 

“accompanied with a sharp increase in the amplitude”. This passage associated with something 

uncontrolled. Though, almost any child had a chance to make sure: it is very easily to handle and 

gently drive by the resonance. The question is never disclosed to the end: it is not clear how to 

recognize the resonant phenomena in practice, how this may be formalized mathematically, 

whether the resonance has place or not in any specific case? Also, there are many adjectives to 
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the word “resonance” in the literature, for example: external and internal resonance, the absolute 

and stochastic resonance, linear and nonlinear one, etc. And how can one do recognize the es-

sence of this physical phenomenon for such an abundance of terms? It turns out that the mathe-

matical formalization of the resonant phenomenon is difficult enough. Let us refer back to one 

more appropriate definition: “Let ( )ζγ  is the Hamiltonian, then zero 0ζ =  is a fixed point of the 

set (1.1) and ( )nλλ ,..,1=λ  is the vector of eigenvalues λ  of the linear part of the system, so that 

λ  exhausts all its eigenvalues. The Hamiltonian ( )ζγ  (and the system (1.1)) is in resonance, if 

the equation  

0, =λp             (3.1) 

has a nonzero integer solution 0pZp ≠∈ ,n  ( nZ  is a group of all n -dimensional integer vec-

tors) ... In general, if at least one 0=jλ , there is a resonance and its order is equal to unity, 

since the equation (3.1) has a solution jep = “. The set of equations (1.1) is the following: 

jj ηγζ ∂∂= /& ; jj ζγη ∂−∂= /&  ( )nj ,1= , where jζ  and jη  are canonically conjugate coordi-

nates1.  

From this definition it follows that the resonance may present in Hamiltonian systems2, which 

must possess, at least, the first integral. In addition, the phenomenon of resonance can be ob-

served not only in non-autonomous systems, but also in the autonomous Hamiltonian systems, 

where no external forces act. Moreover, it is not required a proximity or coincidence between the 

resonant frequencies or eigenvalues. One would ask what can be found of interest in Hamiltonian 

systems which are almost absent in engineering practice? But, the Hamiltonian systems are gen-

eral in the nature. For example, one can refer to the stability of the solar system that conserves 

quasi-periodic motions during milliards years. On the contrary, the instability of the Pluto's orbit 

due to the resonance caused the recent exception of this celestial body from the family of planets 

of our solar system. Most phenomena in the microcosm are also described by the Hamiltonian 

mechanics.  

Let us pay attention to another pragmatic definition of the resonance adapted for oscillating sys-

tems: “First of all it is necessary to define the resonance and indicate on what grounds can es-
                                                 

1 Bruno, A.D.: Bounded Three-Body Problem. Nauka: Moscow (1990) [in Russian]  

2 A similar approach can be found in Arnold, V.I. et al in Mathematical aspects of classical and 
celestial mechanics. VINITI: Moscow (1985) [in Russian]  
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tablish its presence in the system (22.2) before solving the problem. We give a definition for this 

purpose through the time-average of functions ( )εϕ ,,xΦ  and ( )εϕ ,,xX :  

( ) ( )

( ) ( ) .,,,...,
1

,,

,,,,...,
1

,,

0

11
*
0

0

11
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0

lim

lim

dttt
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∫

∫

++=

++=

∞→
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εθωθωεϕ

εθωθωεϕ

xXxX

xΦxΦ

    (22.9) 

These expressions represent the average values of the right-hand terms of the system (22.2) with 

respect to the time, calculated along the trajectory of the degenerated system ( )0=ε :  

.const, θωx +== tϕ  

The function (22.9), considered as functions of ( )mωω ,...,1=ω , can have a point of disconti-

nuity. That is the frequencies at which the functions (22.9) are discontinuous, and thus is called 

as resonant3”. Here, the equations (22.2) are the following: ( ) ( )εϕεϕ ,,xΦω += x& ; 

( )εϕε ,,xXx =& , where Φ  and X  are π2 -periodic functions for all phases.  

From the above quotations, we can conclude that it is very difficult, and perhaps impossible to 

create a context-free (i.e., devoid of any reference to additional information) definition of the 

resonance phenomenon. It is too capacious concept, maybe the same as a concept of information 

or a concept of algorithm. It is possible to give a set of various definitions, and all will be OK in 

their own aspect, but almost all would be incomplete. Therefore, there is no place to fundamen-

tal, theoretical and mathematical foundations describing the resonant phenomena in this booklet. 

This deals with some specific applied problems of engineering only, where the resonant phe-

nomenon plays a key role.  

This monograph consists of seven chapters. In the first one, on the basis of specific examples, 

some general information is referred to mathematical methods from the theory of nonlinear oscil-

lations. The reader, having enough skill over this subject, may pass immediately to the second 

part, which discusses some new aspects related to the Sommerfeld effect, well-known in me-

chanics. The third chapter describes the synchronization phenomenon of a pair of asynchronous 

rotors mounted on an elastic foundation. The question how to control the synchronous motion by 

                                                 

3 Zhuravlev, V.F. and Klimov, D.M.: Applied Methods in Theory of Oscillations. Nauka: Mos-
cow (1988) [in Russian]  
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dampers is posed, as well. The fourth chapter examines the effect of thermo-mechanical instabil-

ity in dampers, which can lead to undesirable dynamical regimes in the system. The fifth chapter 

examines dynamical effects of the geometric nonlinearity of the ring resonator of a solid state 

gyro, which represents an angle sensor for aims of inertial navigation. The sixth part is devoted 

to the theory of the resonant bolometer. This is a high precision instrument for measuring under 

cryogenic temperatures. The seventh chapter studies nonlinear resonant interactions between 

quasi-harmonic waves in a one-dimensional anharmonic chain, based on a simple mathematical 

model originated from the geometry of central and noncentral interactions between particles, 

within the so-called harmonic approximation. It is shown that an ideal crystal structure allows for 

stationary coherent wave ensembles which can significantly influence upon the heat properties of 

the system, especially at low temperatures. The main idea is to find the most optimal version of 

the absorber of the resonant bolometer. All these questions, discussed throughout the text, are 

almost independent problems from the viewpoint of engineering, though being united by a com-

mon analytic approach based on asymptotic methods from the nonlinear theory of oscillations.  

The main purpose of the first four chapters is to master the mathematical apparatus of asymptotic 

methods to study specific dynamic properties of mechanical systems in the presence of the 

Sommerfeld effect, the synchronization phenomenon and the thermo-mechanical instability, as 

well. This should help to understand how to manifest these physical effects in practice, when one 

operates with complex technical system, for example, such as railway equipment, where, as a 

rule, there is a variety of electro-mechanical and thermal phenomena.  

In the fifth chapter, we propose a new type of the wave excitation of a ring resonator gyro, asso-

ciated with navigation systems for long-term space missions up to fifteen years. The main idea is 

to use the instable properties of the axisymmetric oscillatory mode in the axisymmetric thin-

walled ring resonator. The break-up instability of the high-frequency axisymmetric mode is ac-

companied by the resonant excitation of a pair of precessing bending waves due to the so-called 

triple-wave resonant interactions between oscillatory modes entering this resonant ensemble. The 

triple-wave resonance combines advantageously both the parametric and the position types of 

wave excitation in the presence of energy dissipation.  

The sixth chapter examines a model of the resonant bolometer, the operation of which is based 

on the conversion of the electromagnetic radiation into the heat energy by a heat sensor inte-

grated into a high-Q resonant circuit. Oscillations in the resonant circuit are supported by the low 

noise self-excited generator of periodic oscillations at given amplitude and frequency, which op-
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erates based on the physical properties of the Josephson junction. The heat-sensitive receiving 

element, implemented into the resonant circuit, experiences a transition from the superconduct-

ing phase to the normal resistive state. The measurement procedure is to register a change in the 

amplitude and phase envelopes under the incoming electromagnetic radiation flux. The resonant 

bolometer relates to measuring equipment and can be used in devices detecting electromagnetic 

radiation, especially to determine the weak signals in submillimeter-wave spectral range.  

The seventh chapter reveals the multi-wave resonant ensembles in a one-dimensional anhar-

monic chain of particles with allowances for the central and noncentral internal forces. These 

ensembles are formed both due to the quadratic nonlinearity of the system, and due to satisfying 

the phase-matching conditions. The resonant triads entering the multi-wave ensemble can be of 

three different types only, though each resonant triad consists necessarily of one longitudinal and 

two transversal wave modes. These resonant triads are nonlinearly coupled. In general case, this 

leads to a creation of the resonant lattices formed from resonant triads of three different types 

and the spectral scales. Cascade processes of energy exchange between the oscillatory modes are 

characterized not only by complex chaotic dynamics, inherent in nonintegrable Hamiltonian dy-

namical systems, but also by the presence of multi-mode stationary motions, which are stable by 

the Lyapunov criterion. In the ideal crystals such stationary coherent wave ensembles can sig-

nificantly influence on the energy partition between waves, especially at low temperatures. This 

is a relevance of their theoretical and experimental study in micromechanics.  

The monograph is written based on the resent papers [1-5]. This one is recommended to under-

graduate and graduate students of technical specialties, and may also be useful to my dear col-

leagues, researchers, with my wishing them many successes. 
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SIMPLE PROBLEMS OF THE APPLIED THEORY OF 
OSCILLATIONS 

This chapter provides typical examples to the basic problems from the theory of nonlinear vibra-

tions. We consider a pendulum described by the Mathieu equation, Düffing oscillators possess-

ing different nonlinear elastic characteristics, and the van der Pol generator. At the end of some 

subsections, some questions may be proposed for self-reflection, since the state of the art in sci-

ence and technology requires from any specialist not only good skill, knowledge in the problem 

formulation, creating mathematical models and solving basic differential equations, but also the 

ability to obtain applied results.  

Asymptotic methods 

These state the basis of the mathematical analysis in a certain sense. The concept of infinitesi-

mals and infinite values are general. The traditional questions, including, in particular, the series 

convergence, represent key theoretical problem for asymptotic analysis. Unfortunately, abso-

lutely convergent series are almost absent in the theory of dynamical system. Let us recall stan-

dard expansions of the sine-function and the logarithm in the neighborhood of a point. In the 

case of the sine, it is sufficiently to use about three first terms from the Taylor series to access 

adequate calculations up to the sixth decimal sign. In the case of the logarithm, one needs about 

five hundred terms in order to ensure the same accuracy of calculations. Obviously, any calcula-

tor can cope with much more accurate calculations of the logarithm. Though, it is natural to as-

sume that the algorithm for calculating the logarithm cannot follow directly to the formal Taylor 

expansions. Otherwise, one could unnecessarily spend all PC resources to calculate a logarithm 

value. Nonetheless, the accuracy, up to the sixteenth decimal sign, is not a problem for any cheap 

calculator, using somewhat different algorithm. Similar situations are quite frequent in the dy-

namics of systems, since the divergent series in the asymptotic methods are often caused by the 

phenomenon of resonance.  

The concept of resonance is not a primary category. This requires, at least, good-quality knowl-

edge in the mathematical analysis and the theory of ordinary differential equations. It should be 

noted, that the understanding cannot be reduced to a formal definition given, for instance, in 
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“Encyclopedia Britannica”. Nonetheless, one can find rigorous mathematical definitions of the 

resonance in literature. These definitions serve as pragmatic tools in practice4.  

The question of divergent or conditionally convergent series, representing asymptotic solutions 

to the problems of nonlinear dynamics, is usually solved by separating the motion on the so-

called “slow” and “fast” patterns. The “slow” motion is often caused by the resonant phenomena. 

Most effective tools for studying this remarkable phenomenon are the joint methods of the alge-

bra and mathematical analysis, united in the theory of groups that is used almost everywhere in 

the modern physics today5. The next section provides some information related to the resonant 

phenomenon along basic examples in mechanical engineering.  

Resonance in simplest systems 

When studying the resonant phenomena in dynamical systems by asymptotic methods, first of 

all, one should define a form of the generating solution. First, the original set of equations gov-

erning the motion should be transformed to standard equations resolved for the first derivatives, 

and then, one can solve the problem using, for example, a technique of variation of arbitrary in-

tegration constants. The meaning of these preliminary steps is the following. In the generating 

solution, the integration constants are invariants of motion6. In the same generating solution, the 

perturbed invariants play the role of independent variables, slowly evolving in the time. Thus, we 

should trace the rate of “destruction” of these invariants by the method of variation of arbitrary 

constants. Usually, there are no problems to solve the resulting differential equations describing 

the evolution of these invariants. The experience shows that final differential equations usually 

get a very simple mathematical structure, so that one can often obtain their analytical solution7. 

Before the solving, the right-hand terms of the obtained equations are subject to a qualitative 

                                                 

4 Zhuravlev, V.F. and Klimov, D.M.: Applied Methods in Theory of Oscillations. Nauka: Mos-
cow (1988) [in Russian]  

5 Zhuravlev, V.F.: Fundamentals of Theoretical Mechanics. Nauka: Moscow (1997) [in Russian]  

6 The invariants (from Lat. invarians, gen.: invariantis) are physical values, algebraic expres-
sions, etc., associated with any mathematical object and remain unchanged under certain trans-
formations of the object with respect to a group of frames of references, relatively which the ob-
ject is described.  

7 In this case, the original problem should not be integrable by simple methods, or even, be such 
in principle.  
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analysis. Let us suppose that the averaging is performed over the right-hand terms with respect to 

time, and then the problem would reveal the “fast” variables, e.g., the fast rotating phases, and 

the “slow” motions, e.g., the slowly varying amplitudes. The average of any function 

( )ωρφα ,,,f  is calculated as  

( ) ( )
( )

( ) ϕωρφαα
π

ωρφαωρ
ππ

dfdfF ∫∫==
2

0

2

0
2

,,,
2

1
,,,, , 

where some function, for example ρ , is referred to the “slow” motion. Now, the average 

( )ωρ,F  is examined for the presence of jumps of this function, when smoothly scanning the pa-

rameters, which are some suitable parameters of the problem. For example, in the problem of 

oscillations of a simple pendulum, this parameter is single: this is the frequency of linear oscilla-

tions ω . The jump, or nonzero, in averages indicate the presence of resonance in the system. 

This means that the perturbed solution would be qualitatively different from the generating solu-

tion. Otherwise, the motion obtains just small corrections, which may be neglected in many prac-

tical cases.  

Mathematical pendulum 

This is an abstract object in physics, undeniable convenient in modeling many natural phenom-

ena. A mathematical pendulum is isomorphic to the so-called physical oscillator. For example, 

this is a weight suspended from a pivot in mechanics. This weight can swing freely about the 

pivot under the gravity.  

Harmonic oscillators, occurring in a number of areas of electrodynamics, physical chemistry, 

engineering and other natural sciences, are equivalent in the sense that their mathematical mod-

els are represented by the following ordinary differential equation  

0sin2 =+ xx ω&& ,  

where ω  is a positive constant related to the natural frequency; the unknown function x(t)  de-

pends upon the time t . For example, in the mechanics, the oscillation frequency is given by 

lg /=ω , where l  is the length of the suspension; g  is the acceleration of gravity, x(t) de-

notes the angle of deflection of the pendulum from the lower equilibrium position. The equation 

of small oscillations of the pendulum near the equilibrium is given by  

02 =+ xx ω&& . 
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This is the equation of motion of the second order, therefore, the law of motion is called har-

monic oscillations of the pendulum:  

( ) ( )ϕω += tAtx sin ,  

and determined by two independent constants, i.e., by the initial amplitude A  and the initial 

phase ϕ .  

Mathieu equation  

This is an ordinary nonautonomous linear differential equation of the following form [6]  

( )[ ] 02cos2
2

2

=−+ yxqa
dx

yd
,          (1.1) 

where a  and q  are parameters defining the stability properties of solutions8. In particular, this 

equation is used to study the parametric resonance phenomenon, and quasi-linear patterns in 

various applications of theoretical and experimental physics, as well. The well-known example, 

manifesting the parametric resonance, is a playground swing. The height of the center of mass is 

varied periodically; therefore, the moment of inertia also follows these changes. This can lead to 

increase in the amplitude of oscillations. Another example represents a mechanical oscillator the 

pivot of which performs a periodic motion in the direction perpendicular to oscillations.  

The equation (1.1) possesses well-known analytical solutions, though this importance is not so 

valuable. In the case of quasi-periodic coefficients or a quasilinear system, some modifications to 

this equation ensure the effectiveness of asymptotic methods, and unnecessary in the absolutely 

accurate solution.  

The equation (1.1) is transformed to the following standard set  

,cos; 2 txxyyx Ω=+= µω&&          (1.2) 

                                                 

8 The equation, being a special case of Hill’s equations, was introduced by E. Mathieu in a con-
text of vibrations of the elliptic membrane [6]. The stability properties are illustrated by the so-
called Ince-Strutt diagram [7]. The fundamental solutions to Eq. (1) are expressed in the Mathieu 
functions, i.e., special functions which represent periodic solutions to the Mathieu equation [8, 
9].  
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where ω  is the frequency of the pendulum in the absence of the parametric excitation at the fre-

quency Ω . The small parameter of the problem is small: 1<<µ .  

Let us suppose 0=µ , then the generating solution to the set (1.2) is exactly the same as for the 

harmonic oscillator:  

( ) ( ) ( ) ( )11 cos;sin ϕωωϕω +=+= tAtytAtx ,       (1.3) 

where A and 1ϕ  are the amplitude and phase, respectively. These are the integration constants 

determined from the standard initial conditions, defining the state of the system at the initial 

time, i.e., ( )0x  and ( )0y .  

Let the parameter µ  is small, but finite, then Eq. (1.2) can be solved using the method of varia-

tions of arbitrary integration constants. The transform from the old variables of the problem, ( )tx  

and ( )ty , to the new coordinates, ( )tA  and ( )t1ϕ , using the same representation (1.3), where the 

constants of integration are formally replaced by functions ( )tA  and ( )t1ϕ , i.e., 

( ) ( ) ( )( )tttAtx 1sin ϕω +=  and ( ) ( ) ( )( )tttAty 1cos ϕωω += , is resulted, after the substitution into the 

set (1.2), in the following differential equations  

( ) ( )

( )( ) .coscos1

;cossincos

1
22

1

11

tt

tttAA

Ω+−−=

Ω++=

ϕωµωϕ

ϕωϕωµω

&

&

       (1.4) 

Within the first-order approximation, it is natural to interpret the values A  and 1ϕ  as invariants 

or ordinary solutions to the generating equations at 0=µ . The right-hand terms of this set (1.4) 

are of the first power in µ , after the applying the asymptotic procedure. The evidence of the 

resonance is reduced to finding the jumps in the time-averaged right-hand terms of Eq. (1.4), by 

scanning the frequencies ω  and Ω . Formally, the averaging procedure is performed:  

( ) ( )

( )( )∫

∫

Ω+−−=

Ω++=

∞→

∞→

T

T

T

T
A

d
T

R

dA
T

R

0

1
22

0

11

.coscos1
1

lim

;cossincos
1

lim

1
ττϕωτµω

ττϕωτϕωτµω

ϕ

     (1.5) 

The calculated values of these integrals, provided that the parameters ω  and Ω  satisfy the fol-

lowing matching condition ω2=Ω , are such: 11 sincos
2

ϕϕµωA
RA =  and 
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( )ωϕµ
ϕ −−= 1

2cos2
41

R . For all other relations between ω  and Ω , the average values, AR  and 

1ϕR , are zeroes. Consequently, the jump in the averages is observed when the following phase 

matching condition is satisfied:  

∆+=Ω µω2 ,           (1.6) 

where ∆  is a small frequency detuning, introduced to study the behavior of the system in the vi-

cinity of resonance. Consequently, the first-order approximation procedure, applied to the set 

(1.2), reveals the single resonance. To construct the higher-order approximations, the anzats (1.3) 

is modified by introducing the so-called nonresonant corrections )(tX  and )(tY :  

( ) ( ) ( )( ) ( ) ( ) ( )( ) )(cos);(sin 11 tYtttAtytXtttAtx µϕωωµϕω ++=++= ,    (1.7) 

Now, the motions are separated into the “fast” and “slow” ones, when replacing the constant of 

integration by the new unknown functions, ( )tA  and ( )t1ϕ , slowly varying in the time. The role 

of the nonresonant corrections, )(tX  and )(tY , is to compensate the difference between the exact 

and averaged solutions, since ( ) ( ) ( )tOtAtA ∆+= µ  and ( ) ( ) ( )tOtt ∆+= µϕϕ 11 , where the 

brackets denote the time averages. Let us introduce the following notations: ( ) ( )tBtA =  and 

( ) ( )tt 11 αϕ =  

To bring the system to the autonomous form, we introduce the new additional coordinate 

( ) tt ωϕ 22 = , and the related equation ωϕ 22 =& . The substitution from (1.7) into (1.2), with the 

allowances for the phase matching condition (1.6), leads to the so-called truncated or evolution 

differential equations governing the “slow” motions:  

.2cos
4

;2sin
4 1

2

11 ∆−== µαµωααµω
&&

B
B        (1.8) 

This system is characterized by that its right-hand terms are of the order of µ . Evidently, the 

variables of the problem, B  and 1α , should change slowly. Furthermore, the system (1.8) has 

the following formal analytical solution  

( ) ( )( )( )
( ) ,

4

1

4
tan

4

1
arctan

;4/2sinexp
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where 2216 ω−∆=Θ ; 1c  and 2c  are arbitrary constants of integration determined by the initial 

conditions to the original problem, according to the formulae  

( ) ( ) ( ) ( ) ( )
( ) .
0

0
arctan0;

00
0 1

222









=

+
=

y

xyx
B

ωα
ω

ω
      (1.10) 

The solution (1.9) is easily obtained by eliminating the time parameter, and then, by simply di-

viding one equation of the system (1.8) on the other, to apply the methods of integrating the first-

order differential equations.  

The “fast” motions of the problem are naturally represented by the functions tωsin  and tωcos , 

and the third harmonics, as well. The equations for the rapidly changing nonresonant corrections 

would be written as it follows:  

( ) ( )
( ) ,4/cos

;2/sin2/3sin

1

2
1

2
1

2

XtBY

YtAtBX

+−=

−−−+=

αωω
ωαωωαωω

&

&

     (1.11) 

The exact solution to this system is irrelevant, because it would have unnecessarily inflated de-

gree of accuracy within the first-order approximation analysis. It is sufficiently to express one 

variable, does not matter )(tX  or )(tY , through the other variable. It is obvious that such a pro-

cedure, after dropping the terms of order µ , would be resulted in the following oscillatory equa-

tion  

( )1
22 3cos

2

3 αωωω +=+ tBXX&& .        (1.12) 

The trivial initial conditions are natural for this equation. Now, it is useful to summarize some 

results of the present study:  

• The original problem is related to the nonautonomous second-order differential equation 

(1.2). In the first-order approximation, the asymptotic procedure reduces the problem to 

the autonomous set (1.8).  

• The averages of the right-hand terms of the original set, which are obtained by substitut-

ing from (1.3) into (1.2), is clearly dependent upon the nonresonant corrections )(tX  and 

)(tY : ( ) ωωωωµ /cossinsincos 2 Ξ−Ξ+Ξ−Ξ−= YXYXTA
&& , 

( ) BYXYXT /sincoscossin 2

1
Ξ−Ξ−Ξ+Ξ−−= ωωωµϕ

&& , where 1ϕω +=Ξ t . Though, 

these average values must be zero.  



 18 

• The set (1.8) describes the “slow” motions, due to the presence of the resonance in the 

system (1.2). The resonance is specified by the given structure of the governing equations 

(1.2). Therefore, the phase matching condition (1.6) is the necessary condition of reso-

nance.  

• The equation (1.11) describes the small nonresonant corrections to the basic solution 

(1.3) within the first-order approximation analysis. These corrections are not relevant to 

the first-order approximation, however, these are necessary to refine the higher-order ap-

proximations, following the asymptotic procedure. 

For example, let us select the following specific parameters of the problem: 1.0=µ , 1=ω , 

2=Ω , ( ) 01.00 =x , ( ) 01.00 =y , 01.0=∆ . The time history of the system (1.8) is represented in 

Fig. 1.1.  

a b 

Fig. 1.1 Amplitude envelope and phase: a –( )tB ; b – ( )t1α   

Obviously, a comparison between the analytical and numerical results displays that these are in-

distinguishable (Fig. 1.2). However, the analytical solution is much more informative in terms of 

parametric analysis, while the numerical solution gives just one more simulation of the process. 

On this stage of the study we can formulate following problems:  

• How does the phase matching condition (1.6) influence upon the dynamics of the system? 

• Let the phase matching condition has the following form ω≈Ω . How do the evolution 

equations for the “slow” motions change?  
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• Let the phase matching condition is the following ωmn ≈Ω , where n  and m  are non-

zero integers. What form of evolution equations for the variables ( )tB  and ( )t1α  would 

be resulted? 

 

Fig. 1.2 Asymptotic solution vs. numerical integration: dotted line traces the amplitude enve-
lope ( )tB ; solid line corresponds to exact solutions  

Düffing Oscillator 

The equation governing the motion of the Düffing oscillator has the following form9  

( ),cos2

;
32 xtfyxy

yx

ηµµδω −Ω=++

=
&

&

        (1.13) 

where ( )txx =  is the sought variable; ω  denotes the natural frequency of the oscillator when the 

small parameter of the problem µ  is zero; δ  stands for the coefficient of energy dissipation; η  

is the nonlinearity coefficient; f  is the magnitude of the external periodic force oscillating at the 

frequency Ω ; t  is the time. Let 0=µ , then the set (1.13) describes linear harmonic oscillations. 

In the absence of dissipation of energy 0=δ , and at infinitely small oscillations, one can neglect 

the nonlinearity, 0=η . As a result, one can conclude that the linear harmonic oscillator, under 

the periodic force t fF Ω= cos , performs finite forced oscillations at the same frequency that 

                                                 

9 The simplest nonlinear system, first studied by the German engineer Georg Düffing in 1918. 
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the external force10. Though, when the natural frequency coincides with the of the external force, 

Ω=ω , the system experiences the resonance, expressed in the unlimited growth in the ampli-

tude. It is well known that the solution would be always limited in the damped forced case, at 

0≠δ . After performing the change of variables  

( ) ( ) ( )( ) ( ) ( ) ( )( ),cos;sin 11 ttttyttttx ϕωωρϕωρ +=+=       (1.14) 

Eq. (1.13) turns into the so-called standard form of differential equations, resolved relatively to 

the first derivatives. The dynamical patterns of the system are studied in the vicinity of the reso-

nance Ω≈ω . It is reasonable to introduce the new coordinates, ( ) 11 αωϕ += tt  and 

( ) 22 αϕ +Ω= tt . On the one hand, this allows to obtain the autonomous standard form, while on 

the other hand, to separate the motions into “fast” and “slow” ones.  

The standard form reads  

( )
( ) ( )

( ) ( )
;

sin42sin4

22sin244sin

822cos8

8
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3

1
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ω
µρ

tfttf
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t

&  

( )
( ) ( )

( ) ( )
.

cos42cos4

22cos444cos3

22sin8

8
2121

1
3

1
33

1

1

















Φ++−∆+Φ+++∆+−
+−+++

+

=
ααµααµω

αωηραωηρηρ
αωδωρ

ωρ
µα

tfttf

tt

t

&
 

            (1.15) 

Here, the detuning ∆  is associated with the phase matching of the system: ∆+=Ω µω . This re-

lationship must be necessarily satisfied in the presence of resonance.  

To obtain an analytical solution, the standard form (1.15), being completely equivalent to the 

original equations, is truncated to the evolution equations by calculating the averages of the 

right-hand terms entering there:  

                                                 

10 When studying the forced oscillations, one usually neglects the solution to the corresponding 
homogeneous subsystems, evolving accordingly to the harmonic or exponential law.  
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( )[ ]

( )[ ],cos43
8

;sin2
2

21
3

21

212

Φ++−∆+−=

Φ++−∆+−=

ααµηρ
ρω

µα

ααµδωρ
ω
µρ

tf

tf

&

&

       (1.16) 

After the introducing the new angular variable ( ) Φ++−∆= 21 ααµψ tt , and the “slow” time 

scale tµτ = , this system becomes suitable for analytical study:  

.
8

3cos4
;sin

2 2

3

2 ρω
ηρψ

τ
ψψ

ω
ρ

ω
δ

τ
ρ −−∆=−−= f

d

df

d

d
      (1.17) 

The solution to this set describes the evolution of the amplitude ρ  and phase ψ  of the Düffing 

oscillator within the first-order perturbation analysis. In the absence of the external force and the 

energy dissipation, the set (1.17) is essentially simplified:  

,
8

3
;0

2

2

ω
ηρ

τ
ψ

τ
ρ −∆==

d

d

d

d
          (1.18) 

and can be easily integrated:  

τ
ω

ηρψψρρ 







−∆+==

2

2
0

00 8

3
; , 

where 0ρ  and 0ψ  are the integration constants determined from the initial conditions.  

Let us analyze this solution, together with the phase-matching condition ∆+=Ω µω , and the 

form of the substitution (1.14). We can find the deviation of the oscillatory frequency, caused by 

the nonlinearity: 22
0 8/3 ωµηρν −= . It is obvious that if the nonlinearity coefficient is positive, 

i.e., 0>η , then the effective frequency of the Düffing oscillator, νωω +=eff , would decrease. 

Otherwise, the effective frequency increases, if the nonlinearity coefficient is negative.  

Among all the solutions to the set (1.17), the stationary oscillatory modes and their stability 

properties are of interest. The stationary states can be obtained from the algebraic system of 

equations, which is resulted by equating to zeroes the derivatives in the differential equations 

(1.17). This set of algebraic equations is associated with the frequency response of the Düffing 

oscillator:  

( ) 22
0

424
0

22
0

224 166494864 f=++∆+∆ ρωδρηηρωω ,     (1.19) 
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depicted in Fig. 1.3. Each point on this curve corresponds to the stationary solutions, which can 

be stable or not. To investigate the stability, one can use a variety of well-known criteria11. We 

would consider an application of the Hurwitz criterion below.  

 

Fig. 1.3  Amplitude-frequency relation to the Düffing equation at 1=f ; 1=ω ; 1=η . Higher 
the amplitude, lower the damping ( 35.0,25.0,15.0=δ )  

First, the so-called set of equations describing small perturbations is prepared. After using the 

following transform to the set (1.17):  

( ) ( ) ( ) ( ),; 00 τερρτρτεψψτψ +→+→   

where ε  is an infinitesimal, these equations obtain the form  

.
4

cos23sin4

;
cos2

2
0

2
0

3
000

2
00

ρω
ψρρηρψψρ

τ
ψ

ω
ψψδρωρ

τ
ρ

ff

d

d

f

d

d

+−=

+−=
       (1.20) 

                                                 

11 Goryachenko, V.D., Prigorovsky, A.L. and Sandalov, V.M. Problems in the theory of oscilla-
tions, stability of motion and the qualitative theory of differential equations. Textbook. 2nd ed., 
Nizhny Novgorod: Publishing House of the Nizhny Novgorod State University (2007) [in Rus-
sian]  
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The linear differential equations (1.20) describe the dynamics of the system (1.17) in a small 

neighborhood of stationary regimes. If these solutions will increase without limit, the steady state 

motion will be unstable. To solve the problem of stability, it is sufficient to use solutions to the 

eigenvalue problem. If the real parts of the eigenvalues will be negative, then we can talk about 

the stabile motion, otherwise, the stationary regimes would be unstable. One of the universal 

tools to solve the problem of stability is the Hurwitz criterion, well-known from the course of 

algebra and geometry. There are some concrete steps for calculating the criterion Hurwitz. First, 

the characteristic polynomial of the system (1.20) is prepared as it follows: 

( )
2
0

4
000

3
00

2

0
2

002

8

sin4cos3cos2

2

2sin

ρω
ψωρψηρψλ

ρω
δωρψλλ −++−−= ff

P . 

Then, accordingly to a paradigm of practical applications of the Hurwitz criterion, we introduce 

the following notation for the coefficients of the polynomial:  

10 =g ; 
0

2
00

1 2

sin2

ρω
ψδωρ f

g
−= ; 

2
0

4
000

3
00

2

2 8

sin4cos3cos2

ρω
ψωρψηρψ −+= f

g ; 0543 === ggg ,  

and write out the following determinants:  









=

23

01
2 gg

gg
T ; 

















=

345

123

01

3

0

ggg

ggg

gg

T ,  

For consistency, we introduce the final determinants: 00 gT = , 11 gT = . If all four values of 0T , 

1T , 2T  and 3T  would be positive, then the stationary regime is reported as stable. Although, if, at 

least, one of these numbers will be negative or approaches zero, then the motion is considered to 

be unstable.  

Now, the information received is sufficient to formulate the following questions:  

• Assume that in the Düffing equation is subject to the following transform of variables, 

( ) ( ) ( )( ) ( )tXttttx µϕωρ ++= 1sin ; ( ) ( ) ( )( ) ( )tYtttty µϕωωρ ++= 1cos . What form of 

equations for the “nonresonant” corrections, ( )tX  and ( )tY , will be? 

• Would the stationary oscillations be stable for the Düffing oscillator, using the Hurwitz 

criterion? 
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Oscillator with quadratic nonlinearity 

The equations of motion of this oscillator are the following  

( ),cos2

;
22 xtfyxy

yx

ηµµδω −Ω=++

=
&

&

         (1.21) 

wherein all the symbols are exactly the same as in the case of the classical Düffing oscillator.  

Let 0=µ , then the system (1.21), as before, describes the motion of a linear harmonic oscillator. 

If 0≠µ , and the energy dissipation presents, 0≠δ , but there is no external periodic force, 

0= f , then one obtains a nonlinear oscillator with the asymmetric restoring force. Solution to 

this system is sought in the form  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ),sincos

;cossin

1

1

tyttBttAty

txttBttAtx

µωωωω
µωω
+−=

++=
       (1.22) 

where ( ) ( )txty 11 &= . After the substitution from (1.22) into the set (1.21), we determine the evo-

lution equations in terms of new unknown functions ( )tA , ( )tB  and ( )tx1 , ( )ty1 . It is obvious 

that since the order of the original system is two, then the variable ( )tx1 , which represents a 

small nonresonant additive correction should be linked to the two remaining unknowns ( )tA  and 

( )tB , representing the slowly varying amplitudes.  

It is remarkable, although the system (1.21) experiences the resonance, nonetheless, this one 

cannot be detected within the first-order approximation analysis as it has be done in the previous 

examples. After the reduction of the original set to the standard form and the averaging proce-

dure, one can obtain the following very simple equations:  

.; BBAA µδµδ −=−= &&          (1.23) 

The equation for the nonresonant correction reads  

( ) ( )
tABt

ABAB
xx ωηωηηηω 2sin2cos

22

2222

1
2

1 +−++=+&& .    (1.24) 

When solving the last equation (1.24), we should remember that the accuracy of the asymptotic 

procedure is of order µ , accordingly to the expression (1.22). Therefore, it becomes evident that 

within the first-order nonlinear approximation, the correction ( )tx1  can not depend explicitly 

upon the small parameter µ . Thus, the solution to Eq. (1.24) is also very simple:  
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( ) ( ) ( ) ( )[ ],2sin22cos3
6

2222
21 tABtBAABx ωω

ω
η −−++=   

where the amplitudes ( )tA  and ( )tB  are considered as constants, accordingly to the solution to 

Eq. (1.23), when 0=µ . Consequently, in the first-order nonlinear approximation, the solution to 

the set (1.21) is almost indistinguishable from the linear solution, as 0=µ . This case requires 

applying the tools of the second-order nonlinear approximation analysis, to have some nontrivial 

result. Now the solution of the system is modified with the allowances for the above information:  

( ) ( )
( ) ( )[ ] ( )

( )
( )[ ] ( ),2cos22sin
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;2sin22cos3
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ωωωω

µωω
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+−=

+−−+++

++=

   (1.25) 

where ( ) ( )txty 22 &= . After substituting the expression (1.25) into the set (1.21) once again, one 

can obtain the evolution equations for the new unknown functions ( )tA , ( )tB  and ( )tx2 . Obvi-

ously, the variable, responsible for the second-order nonresonant additive correction ( )tx2 , 

should also be linked with the slowly varying amplitudes ( )tA  and ( )tB .  

In the second-order nonlinear approximation, the resonance in the system (1.21) is already pre-

sent. The nontrivial evolution equations are the following  

( )
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;
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5

222
3

222
3
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ω
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&

&

        (1.26) 

These equations, in the absence of the energy dissipation, 0=δ , can be easily resolved:  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ,00
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cos0;00

12

5
sin0 22

3
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22
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+= tBABtBtBAAtA

ω
µ

ω
µ

 

where ( )0A  and ( )0B  are the initial values of amplitudes. Obviously, that in vacuo, 0=δ , the 

corresponding solution would be very primitive. And now, an answer on the question how does 

the quadratic nonlinearity effect on the dynamics of the nonlinear oscillator is ready. This type of 

nonlinearity, as in the case of the classic Düffing oscillator, causes the frequency deviation of 
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order 2µ , within the second-order approximation procedure. This effect is very weak, but has a 

significant impact on the evolution of dynamic systems.  

Van der Pol generator 

Van der Pol generator is an important special case of the Liénard equation [10], describing the 

motion of simplest nonlinear oscillatory systems12. In particular, the following second-order or-

dinary nonlinear differential equation is a mathematical model of self-excited electric oscilla-

tions:  

( ) ,; 22 yxxyyx δµω −=+= &&         (1.27) 

where ( )txx =  is the dependent variable; ω  is the natural frequency of the oscillator when the 

small parameter of the problem µ  is zero; δ  is non-negative rate of energy dissipation; t  de-

notes the time. Let 0=µ , then the set (1.27) describes the oscillations of a simple harmonic os-

cillator, therefore, its solution for small µ , can be found in the form:  

( ) ( ) ( )( ) ( )tXtAtx µτϕωτ ++= sin ; ( ) ( ) ( )( ) ( )tXtAty &µτϕωτω ++= cos ,    (1.28) 

where ( )tX  is a small nonresonant correction. The substitution from (1.28) into Eq. (1.27) leads 

to the following evolution equations describing the “slow” motion:  

( ) ( ) ( )[ ] ( )
,0;4

8

1 2 =−−=
τ
τϕδττ

τ
τ

d

d
AA

d

dA
       (1.29) 

where the differentiation is carried out with respect to the “slow” time tµτ = . This set of equa-

tions (1.29) has an analytic solution:  

                                                 

12 Balthasar van der Pol (1889 – 1959) was a Dutch physicist. and mathematician. He was born 
in Utrecht. He graduated from the University of Utrecht (1916), then studied with John Ambrose 
Fleming and Sir J.J. Thomson, the Cavendish Lab at Cambridge University (1916 – 1919). In 
1922 – 1949 he headed the research in electrical laboratory in Eindhoven. Basic mathematical 
works relate to the theory of oscillations. In 1920, the famous equation, describing the oscilla-
tions in vacuum-tube oscillator, was born. The method of slowly varying coefficients to solve 
this equation had been also suggested, which gave start in the development of the modern theory 
of nonlinear oscillations.  
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The integration constants are determined from the initial conditions of the original problem, ac-

cordingly to the following formulae:  
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where ( )00 yy =  and ( )00 xx = . The equation for the nonresonant corrections ( )tX  is the fol-

lowing  
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tAtAAAA
XX&& . 

Let our attention be drawn to the fact that the last equation evolves in the physical time scale t , 

but not in the “slow” time τ . Assuming that the times t  and τ  are independent, it is a fairly 

simple to obtain analytical expression for the solution to this equation:  
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Obviously, the values A  and ϕ , describing the “slow” motions, are the functions of the “slow” 

time τ . They vary accordingly to the expressions (1.30), governed by the equations of motion 

(1.29). For a visualization, the following specific parameters of the problem are selected: 

1.0=µ , 1=ω , 1=δ , 1.00 =x , 01.00 =y . The time history of the solution 

( ) ( ) ( )( ) ( )tXtttAtx µϕω ++= sin  is shown in Fig. 1.4. Here the time evolution of the amplitude 
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( )tA  and phase ( )tϕ  is described by the expressions (1.30) and the formula for the small additive 

term ( )tX . Figure 1.4 shows the numerical solution to the original problem (1.27) with the same 

data, as in the case of the asymptotic solution. Apparently, these plots almost coincide. This indi-

cates a good quality of the asymptotic approximation.  

 

Fig. 1.4  Time history (dotted line – analytical solution of the first-order approximation; solid 
line – direct numerical integration)  

Nonlinear waves in a thin infinitely long bar 

We concern with the essentials of nonlinear wave properties in typical mechanical systems such 

as an infinite straight bar and a circular ring. It is found that the triple-wave resonance can be ex-

perienced in systems with continuous and discrete spectra. The circular ring is studied in detail in 

the context of the solid state wave gyro in the fifth chapter. Much more complicated cascade 

wave processes and the stability properties of coupled modes with respect to small perturbations 

are discussed in the seventh chapter.  

We consider mechanical vibrations of a thin bar performing plane oscillations along the longitu-

dinal and transverse directions. The elongation of a segment in the bar, Λ , and the curvature of 

the median line, Κ , in the vicinity of the point x  at the time t   can be expressed as it follows: 

( ) 11 22 −++=Λ XX WU  and ( )( )( )XXX UW +=Κ 1/arctan , where ( )TXUU ,=  and 

( )TXWW ,=  are the longitudinal and transverse displacements, respectively. Then the Lagran-

gian density of the system in the harmonic approximation takes the form  
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( ) ,
222

2222 Κ−Λ−+= EJEA
WU

A
L TT

ρ
 

where ρ  is the mass density; A  denotes the cross section area; E  is the Young modulus; J  

stands for moment of inertia of the cross section. In a dimensionless notation, this Lagrange den-

sity function reads  

( ) .2/22222 καε −−+= tt wul          (1.31) 

The related algebra is not cumbersome, though is omitted. It can be found in lengthy original re-

ports. We just emphasize here on the mechanical consequences of the analysis. The relevant di-

mensionless equations are the following [11]:  

( ) ( )xxxxxxxttxxxxtt wuwwwuu µαµ =+=− 22 ;2/        (1.32) 

where α  is the dimensionless radius of inertia of the bar; µ  is a small parameter arising from 

asymptotic considerations. Equations (1.32) are established under the working hypotheses of 

Bernoulli and Euler. Only second-order couplings between the longitudinal mode u  and the 

bending mode w  are kept. The linear analysis of Eq. (1.32) yields straightforwardly the disper-

sion relation for the longitudinal waves propagating without dispersion:  

kl ±=ω ,           (1.33) 

and that for the highly dispersive bending waves:  

,2kb αω ±=            (1.34) 

where ω  and k  denote the natural frequencies and wave numbers, respectively.  

The spectra are sketched in Fig. 1.5. Now, we consider the possible coupling between three 

waves selected at working points in this figure in a typical parallelogram form such that we sat-

isfy the so-called three-wave phase matching conditions  

.; 213213 kkkk ∆++=∆++= ωωωω        (1.35) 

That is, we consider the energy exchange between a large-amplitude high-frequency longitudinal 

wave coupled to two low-frequency bending wave perturbations propagating in opposite direc-

tions. These three waves create a resonant triad. The nonlinear resonant coupling between these 
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modes is now examined on the basis of the average Lagrangian in the first-order approximation 

analysis in µ . Coupled solutions are sought in the form  

 

Fig. 1.5 Triple-wave phase matching between high-frequency longitudinal and a pair of low-
frequency bending waves in a bar. The bending dispersion branch is traced by the dashed line, 
while the boxes correspond to the waves of the triad  
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      (1.36) 

where xµχ = , tµτ =  ( 1<<µ ); nA  are the slowly varying complex amplitudes; xkt nnn −= ωφ  

are the phases. Each couple ( nn k,ω ) satisfies to the correspondingly numbered dispersion rela-

tion, and altogether the phase matching conditions (1.35). The symbol ..cc  denotes the complex 

conjugate.  

On substituting from the anzats (1.36) into the Lagrangian (1.31), and averaging the result over 

both the space and the time scales, we obtain a set of three coupled hyperbolic-type partial dif-

ferential equations for the complex amplitudes:  
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ω
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         (1.37) 

Here, ( )
nkknn dkkdv

=
Ω= /  are the group velocities of these three modes; 2/111 kkkαβ −=  is the 

nonlinearity coefficient, while ( ) ( )kxtiAAAkxtiAAAU ∆+∆−+∆−∆= ωω expexp 321321  is the 

average potential. The Cauchy problem associated with Eq. (1.37) requires the initial conditions: 
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( ) ( )χχ nn aA =0,  ( )3,1=n . Let us denote the energy and the energy flux, associated with each 

linear mode, as it follows:  
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nnnnnn EvSAE == ω          (1.38) 

We can establish several consequences of Eq. (1.37) and (1.38) such as the equation  
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It is clear that the following conservation also hold true:  
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In the case of spatially uniform processes, direct consequences of these divergent laws are the 

well-known Manley-Rowe relations (first integrals of Eq. (1.39) and (1.40) characterizing the 

energy partition between modes):  
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The total mechanical energy is conserved: constant321 =++= EEEE , while the evolution 

equations (1.37) are reduced to the following ones  
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These are identical to the Euler equations of motion for a rigid body about a fixed point (for real-

valued variables [12]). At the degree of approximation (cf. (1.36)), in the present approach, we 

have the following easily established results concerning the stability of modes:  

• Longitudinal waves are unstable with respect to small low-frequency perturbations (so-
called break-up instability).  

• Bending waves are stable, at least, within the present first-order nonlinear approximation, 
with respect to small high-frequency perturbations.  

• The loss of stability against the high-frequency wave can lead to a dynamic stress growth 
caused by the resonant excitation of two low-frequency waves.  
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As a consequence, one may pay special attention to the initial stress level, for example, one may 

envisage a restriction on it so as to stay in the elastic regime. Finally, one may inquire about the 

temporal evolution of the considered triad. This requires exploiting a technique such as the in-

verse scattering method in the general case [13], or to find out much simpler analytical expres-

sions, in terms of Jacobi elliptic functions.  

Exploring the Lie series 

We consider the problem of two coupled oscillators. The expressions for the kinetic and potential 

energy are follows  
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Using the Euler-Lagrange method, with the help Lagrangian Π−Κ=L , we can obtain the equa-

tions of motion, and then derive the characteristic equation for the eigenvalues and eigenvectors 

of the problem. This equation, represented in an implicit form  

( )( ) ( ) ,031231
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132122121
4 =+++++++ cccccmcmccmmmm λλ     (1.43) 

is biquadratic, and therefore, it is easy to solve this analytically. Let us suppose that the paramet-

ric dependence ( )1mλ  is of interest. How do the eigenvalues of the problem change with the 

variation of the mass, number one? For equation (1.43) this problem is easily solved: one needs 

to define explicitly the expression for λ . For example, one of the four roots to the equation 

(1.31) at the given parameters: 12 =m ; ( )3,11 == ici , can be expressed as 

( ) 1
2
1111 /11 mmmmm +−−+=λ . 

Let us suppose that the equation (1.31) is transcendental, and then the analytic solution to the 

problem would not so obvious. Here we trace a technique building a solution in the form of the 

so-called formal series Lie, regardless of the form of the implicit function. This one still should 

be enough differentiable.  

Equation (1.31) can be rewritten in the form ( ) 0, 1 ≡mD λ . The parameterization relates to the 

variables ( )µλλ =  and ( )µ11 mm = , using the argument µ . Now one can write the Hamiltonian 

equations  
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where the subscript denotes differentiation with respect to the parameter µ . If the original data 

of the problem are known, for example: ( )2,11 == jmj , ( )3,11 == ici , then the Eq. (1.44) 

can put the Cauchy problem with the initial conditions. Let these conditions would be:  

( ) ( ) .10;10 1 == mλ            (1.45) 

In other words, we study the evolution of one of roots to the original equation depending on the 

parameter µ . The Cauchy problem (1.44), (1.45) can be easily solved numerically.  

If the parameter µ  varies in a small neighborhood of zero only, then it is easy to get a formal 

analytical solution in the form of the Lie series. For this purpose, by virtue of Eq. (1.44), it is 

compiled a pair of functions  
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A parameterization over the variable µ  in the expressions (1.46) is insignificant, since the set 

(1.32) is autonomous. Now the following differential operator is defined  
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which is called the generator of the group.  

Formal Lie series for an arbitrary function of two variables is constructed using the following 

rule:  
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where ( )1,mF λ  is the value of the function when its arguments are determined by the initial 

conditions (1.45), for example: ( ) ( ) 10;10 1 == mλ . Here ( )*
1

* , mF λ  is the value of the same 

function at the explicit dependence upon the small parameter µ . In the particular case 

( ) λλ =1,mF , we obtain a formal series, describing small variations of the eigenvalue upon the 

variable µ . Similarly, a particular relationship ( ) 11, mmF =λ  describes the mass as a function of 

µ . With regard to the problem of the Lie series describing the variation of mass, one can obtain:  
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The result for the eigenvalue is obtained in a similar manner:  

...
5

4332
15128641 5432* ++−+−+= µµµµµλ        (1.50) 

Obviously, the specific cases of the Lie series (1.49) and (1.50) are sign-alternating conditionally 

convergent, or even divergent, series. However, they give a good approximation for small values 

of the parameter of group µ  (Fig. 1.6).   

a b 

Fig. 1.6  Approximation by the Lie series: a – eigenvalue; b – mass. Thin lines show the Lie par-
tial sums. Thick lines correspond to exact analytical solution  
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SOMMERFELD EFFECT 

We analyze a classical problem of oscillations arising in an elastic base caused by rotor vibra-

tions of an asynchronous driver near the critical angular velocity. The nonlinear coupling be-

tween oscillations of the elastic base and rotor takes place naturally due to unbalanced masses. 

This provides typical frequency–amplitude patterns, even let the elastic properties of the base be 

linear one. As the measure of energy dissipation increases, the effect of bifurcated oscillations 

can disappear. The latter circumstance indicates the efficiency of using vibration absorbers to 

stabilize the dynamics of the electromechanical system. The fourth chapter of this monograph 

presents results of theoretical studies inspired by the problem of reducing the noise and vibra-

tions by using hydraulic absorbers as dampers to dissipate the energy of oscillations in railway 

electric equipments. The results of experimental trials over this problem and some theoretical 

calculations, discussed in the text, are demonstrated the ability to customize the damping proper-

ties of hydraulic absorbers to save an electric power and to protect the equipment itself due to 

utilizing the synchronous modes of rotation of the rotors.  

The phenomenon of bifurcated oscillations of an elastic base, while scanning the angular veloc-

ity of an asynchronous driver, is referred to the well-known Sommerfeld effect [14–19]. Nowa-

days, this plays the role of one of classical representative examples of unstable oscillations in 

electromechanical systems, even being the subject of student laboratory work in many mechani-

cal faculties. This effect is manifested in the fact that the descending branch of resonant curve 

cannot be experienced in practice. A physical interpretation is quite simple. A driver of limited 

power cannot maintain given amplitude of stationary vibrations of the elastic base. Detailed 

measurements can reveal that the oscillation frequency of the base is always somewhat higher 

than that predicted by the linear theory. This implies a very reasonable physical argument. With 

an increase in base vibrations, for example, the geometric nonlinearity of the elastic base should 

brightly manifest itself, so that this assuredly may lead to the so-called phenomenon of “pulling”, 

or even, chaotic oscillations [20–22]. However, a more detailed mathematical study can demon-

strate that the dynamic phenomena associated with the Sommerfeld effect are of more subtle na-

ture. If one interprets this effect as a typical case of resonance in nonlinear systems [23–25], then 

one should come to a very transparent conclusion. The appearance of the amplitude-versus-

frequency response characteristic naturally encountered in nonlinear systems, say, when regard-

ing the Düffing-type equations, does not necessarily have place due to the geometric nonlinearity 

of the elastic base. This dependence appears as a result of nonlinear resonant coupling between 

oscillations of the elastic base and rotor vibrations, even when the elastic properties are abso-
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lutely linear. The latter circumstance attracts a practical interest in such a remarkable phenome-

non, as the effect of Sommerfeld, which is focused in the present study. Namely, some recent 

numerical simulations [26] lead to idea of efficiency of utilizing vibration absorbers to stabilize 

the motion of electromechanical systems. The first section of the present study drafts a simple 

analytical approach to the same problem. 

Equations of motion 

The equations governing a rotor rolling on an elastic base read [15–18]  
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where m  is the mass of a base with one degree of freedom, characterized by the linear displace-

ment η ; p  is the elasticity coefficient of the base; q  is the damping coefficient; 1m  stands for 

the mass of an eccentric; 1r  denotes the radius of inertia of this eccentric; 1J  is the moment of 

inertia of the rotor in the absence of imbalance; ( )111 ,ϕϕ &H  is the driving moment; ( )111 ,ϕϕ &L  de-

scribes the torque resistance of the rotor. The single device (unbalanced rotor) set on the plat-

form, while the rotation axis is perpendicular to the direction of oscillation η . The angle of rota-

tion 1ϕ  of the rotor is measured counter-clockwise. Assume that the moment characteristics and 

the driver drag torque are modeled by the simple functions: 1111 ϕ&kMH −=  and 1101 ϕ&kL =  , 

where 1M  is the starting point, 1k  is the coefficient characterizing the angular velocity of the ro-

tor, i.e., 11 / kM ; 10k  is the resistance coefficient. Then the equations of motion are rewritten as  
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After introducing the dimensionless variables, the basic equations hold true: 
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where 1/1 <<= mmµ  is the small parameter; ( ) 011101 / ωJkka += , 2
0111 / ωJMb = , 1111 / Jrmc = . 

Here, mp /0 =ω  stands for the oscillation frequency of the base; x  is the new dimensionless 

linear coordinate measured in fractions of the radius of inertia of the eccentric; 101 / mqrd ω=  is 

the dimensionless coefficient of energy dissipation; t0ωτ =  is the new dimensionless time.  
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The set (2.3) is now normalized at the linear part approaching a standard form. First, the equa-

tions can be written as a system of four first-order equations  
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Then we introduce the polar coordinates, αρ sin=x  and αρ cos=y . So that the equations get 

the following form  
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Now the set (2.5) experiences the transform on the angular variable 1111 aωφϕ −= . Then the 

equations obtain the form close to a standard form  
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Here 111 ab=Ω  denotes the partial angular velocity of the rotor. The system of Eq. (2.6) is 

completely equivalent to the original equations. It is not a standard form, resolved for the first 

derivatives [24], but such form is most suitable for the qualitative study of stationary regimes of 

motion, due to the explicit presence of generalized velocities in the right-hand side terms.  

Resonance 

We study the resonance phenomenon in the dynamical system (2.6). Let 0=µ , then Eq. (2.6) 

are reduced to the following set: 0=ρ& , 1=α& , 11 Ω=φ& , 1111 ba +−= ωω& , which has a simple so-

lution  
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where ( )0ρ , ( )0α , ( )01φ , ( )01ω  are the integration constants. Now the solution (2.7) is substi-

tuted into the right-hand terms of Eq. (2.6). Then one discards all the terms in order µ2 and 

higher, as well, to perform the averaging over the period of fast rotating phases. In the problem 

(2.6), the fast variables are the angles ( )τα  and ( )τφ1 , accordingly, ( )τρ  and ( )τω1  are the slow 

variables. The average of an arbitrary function is calculated as  
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Now the average ( )1,ωρF  is examined for the presence of jumps along a smooth change of sys-

tem parameters. One of which represents the partial angular velocity 1Ω . It is easy to see that the 

jump of the average takes place at the value 11 =Ω .  

Evolution equations 

In the case when the system is far from resonance, i.e., µ>>−Ω 11 , Eq. (2.6) can easily be 

solved using the Poincaré perturbation method applied to the small nonresonant terms in order µ. 

However, in the resonant case, as 0~11 −Ω , the first-order nonlinear approximation solution 

should contain the so-called secular terms appearing due to the known problems of small de-

nominators. To overcome such a problem, one usually does the following trick. As soon as the 

quantities ( )τα  and ( )τφ1  are changing rapidly, with approximately the same rate, it is natural to 

introduce a new generalized slow phase ( ) ( ) ( ) ( )( ) 1111 / aτϖτφτατ +Ω+−=Φ , where 

( ) ( ) 111 Ω−= τωτϖ  is a small variation of the angular velocity. Then after the averaging over the 

fast variable α, one obtains the equations for the slow variables only, which are free of secularity. 

Such equations are called the evolution equations or truncated ones. In the case of the set (2.6), 

the truncated equations hold true:  
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where 11 Ω−=∆  is the small frequency detuning, ( )τΦ  is the new generalized phase. Note that 

for the problem of averaging over the fast variable is enough to write 1≈α& .  



 39 

Stationary oscillations in the absence of energy dissipation 

Now the usual condition of a steady motion, i.e., 01 ==Φ= ϖρ &&& , is applied. We are looking now 

for the stationary oscillatory regimes in vacuo, i.e., 0=d . The solution corresponding to these 

regimes reads  
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This solution describes a typical resonant curve near the point 11 =Ω . The next stage of the 

study is to test the stability properties of stationary solutions. To solve this problem, one should 

obtain the equations in perturbations. The procedure for deriving these equations is that, firstly, 

one performs the following change of variables  
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where ( ) ∆−∆= 2/10 µρ  is the amplitude of steady-state oscillations, then after replacing the 

variables, the perturbation equations get the following form  
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To solve the stability problem evoking the Lyapunov criterion, we formulate the eigenvalue 

problem defined by the following cubic polynomial, implicitly presented by determinant of the 

third order  
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Now we can apply one of the most widely known criteria, for example, the Hurwitz criterion, for 

the study the stability properties in the space of system parameters. The result is that the de-

scending branch of the resonant curve, when 11 >Ω , cannot be practically observed because of 

the volatility associated with the fact that the driver is of limited power. This cannot maintain the 

given stationary oscillation of the elastic base near the resonance. This result corresponds to the 

well-known paradigm associated with the so-called Sommerfeld effect.  

Formally, there are stable stationary regimes, as 21 ≥Ω . However, this range of angular veloci-

ties is far beyond the accuracy of the first-order nonlinear approximation.  

Damped stationary oscillations 

A small surprise is that the response of the electromechanical system (2.2) has a significant 

change in the presence of even very small energy dissipation. Depending on the parameters of 

the set (2.2), the small damping can lead to typical hysteretic oscillatory patterns when scanning 

the detuning parameter ∆ . Though, let the dissipation be sufficiently large, then very simple sta-

ble steady-state motions, inherent in almost linear systems, hold true also.  

From the stationary condition, one looks for the stationary oscillation regimes 0ρ , 10ϖ  and 0Φ , 

as 0≠d . The equations corresponding to these regimes are the following ones 
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        (2.9) 

For a small damping, the solution to these equations describes a typical nonunique dependence 

between the frequency and amplitude, i.e., ( )∆0ρ , defined parametrically through the phase 0Φ . 

Near the resonance, 11 =Ω  ( 0=∆ ), at some given specific parameters of the problem, say 

1.0=µ , 03.0=d , 1=a  and 1=c , the sketch of this curve is shown in Fig. 2.1.  



 41 

 

Fig. 2.1  The frequency-amplitude dependence ( )∆0ρ  near the resonance 11 =Ω  (arbitrary 

units)  

To study the stability problem of stationary solutions to the perturbed equations, we should for-

mulate the eigenvalue problem. This leads to the following characteristic cubic polynomial  
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It should be noted that the characteristic polynomial coefficients are calculated with a somewhat 

inflated for the first-order approximation accuracy. In fact, it is easy to prove by series expansion 

in the small parameter µ . However, the coefficients in the truncated form are such that again 

lead to a transcendental equation. Therefore, the mathematical significance of such asymptotics 

is small enough. Now one traces the stability properties by finding the areas of system parame-

ters when applying the Routh-Hurwitz criterion, which states the necessary and sufficient condi-

tions of positivity of the following numbers 00 gT = , 11 gT = , 20312 ggggT −= , 323 gTT = . 

These conditions are violated along the amplitude–frequency curve when scanning the parameter 

between the points A and C. The characteristic points A and B originate from the traditional 

condition that the derivative of function approaches infinity. The point C appears due to the mul-

tiple and zero valued roots of the characteristic equation ( ) 0=λp , as the determinants in the 

Routh-Hurwitz criterion approach zero, more precisely, 02 =T  (Fig. 2.2).  

 

Fig. 2.2  The second determinant of the Routh-Hurwitz criterion versus detuning, ( )∆2T  

( 1.0=µ , 03.0=d , 11 =a , and 11 =c )  
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At the direct scanning of the parameter ∆  together with increase in the angular velocity of the 

driver, one can observe a “tightening” of oscillations up to the point A. Then, the upper branch 

of the resonant curve becomes unstable and the stationary oscillations jump at the lower stable 

branch. At the reverse scan the angular velocity of the driver at the point C, in turn, there is a 

loss of stability of stationary oscillations at the lower branch and the jumping to stable oscilla-

tions with the greater amplitude at the upper branch of the resonance curve. The point B, appar-

ently, is physically unrealizable mode of oscillations. 

However, with the growth of the dissipation, the instability zone shrinks. Then the amplitude–

frequency curve becomes unambiguous, and the instability zone is completely degenerated. In 

this case, the Sommerfeld effect also disappears.  

Resume 

Near the resonance, the rotor is substantially influenced by the pair of forces acting from the 

damped vibrating base. The average value of this moment is a positive defined value propor-

tional to the amplitude of vibrations of the base. Therefore, near the resonance, some increase in 

the angular velocity of the driver is experienced, provided the damping is sufficiently small. This 

leads to the phenomenon of “pulling” hesitation, despite the fact that the elastic properties of the 

base are linear. Nonetheless, together with the growth of dissipation, the zone of the Sommerfeld 

instability narrows down to its complete disappearance. This leads to the idea of efficiency of 

utilizing vibration absorbers to stabilize the motion of electromechanical systems [26].  
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SYNCHRONIZATION 

The phenomenon of the phase synchronization had being first physically described by Huygens 

and was intensively studied mathematically only since the mid twentieth century, in parallel with 

significant advances in electronics [27–29]. Fundamental results on the synchronization in terms 

of the qualitative theory of differential equations and bifurcation theory prove the resonance na-

ture of this phenomenon [23, 30, 31]. Now, the application of this theory is widely used to solve 

pressing practical problems in a wide range of activity from microelectronics to power supply 

[18, 32–35]. Now the research interest in advanced fields of the synchronization theory is con-

centrated, apparently due to the rapid development of new technologies, on studying complex 

systems with chaotic dynamics, discrete objects and systems with time delay variables. However, 

in the traditional areas of human activity such as, for instance, energy and transport, there is also 

noticeable growth of attention in this phenomenon focused on the searching effective ways to 

save the energy and integrity of power units. Progressive developments in the scientific re-

searches are constantly improving and expanding in our understanding over the synchronization 

phenomenon, as a consistent coherent dynamic process. This one occurs usually due to very 

small, almost imperceptible bonds between the individual elements of the system, which, never-

theless, cause a qualitative change in the dynamical behavior of the object.  

The basic equation of the theory of phase synchronization of a pair of oscillators or rotators 

reads: Ψ+=Ψ sin/ QdTd δ , where δ  is a small frequency (or angular velocity) detuning, Q  is 

the depth of the phase modulation, T  is temporal scale. This one being a very simple equation 

has the general solution in the following form 

( ) 
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 −+−=Ψ QQQ
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22
tan

1
arctan2 δδδ

δ
 

where C  is an arbitrary constant of integration. From this solution follows a simple stability cri-

terion for the stable phase synchronization: 022 <− Qδ . It shows that the phase mismatch δ 

must be small or, accordingly, the parameter of modulation Q  must be sufficiently large, other-

wise the synchronization may be destroyed. 

A more detailed mathematical study of this problem, referred to a two-rotor system based on an 

elastic foundation, turns out that the reduced model is incomplete. Namely, one draws somewhat 

surprising attention to that the model lacks any description of that element of the system which 
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provides the coupling between the rotors. More detailed studies lead to the following structure of 

the refined model:  

( ) ,sin; 2ρδρρ
RQ

dT

d
DS

dT

d +Ψ+=Ψ−=   

where ( )Tρρ =  describes a measure of the amplitude of oscillations of the elastic foundation. 

This additional equation appears as a result of the phase modulation of the angular velocity of 

rotors due to the elastic vibrations of the base. So that, the perturbed rotors, in turn, cause the 

resonant excitation of vibrations of the base, described by the first equation. In the study of the 

refined model, one can explain that the stable synchronization requires the same condition: 

022 <− Qδ . But, one more necessary condition is required; namely, the coefficient of the reso-

nant excitation of vibrations of the base S should not exceed the rate of energy dissipation D , 

i.e., DS < . The last restriction significantly alters the stability region of the synchronization in 

the parameter space of the system that will be demonstrated by some specific computational ex-

amples.  

Equations of motion 

We consider the motion of two asynchronous drivers mounted on an elastic base. A mathemati-

cal model is presented by the following system of widely cited differential equations [34, 35], 

which may be considered as a generalization to Eq. (2.1):  
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  (3.1) 

where m  is the mass of the base, modeled as a rigid body with one degree of freedom, character-

ized by a linear horizontal displacement η ; p  is the coefficient of elasticity of the platform; q  is 

the damping coefficient, mi are the small masses of eccentrics with the eccentricities ir  (radii of 

inertia); iJ  are the moments of inertia of rotors in the absence of imbalance; ( )11,ϕϕ &iH  stands 

for the driving moments; ( )11,ϕϕ &iL  denotes the resistance moment of the rotor (2,1=i ). The 

angles of rotation of the rotors iϕ  are measured from the direction of their axis counter-

clockwise. Assume that the moment characteristics of each driver and torque resistance have, as 

previously, a simplest form, i.e., ( ) iiiiii kMH ϕϕϕ && −=,  , ( ) iiiii kL ϕϕϕ && 0, = . Here, iM  are the con-

stant parameters, respective for the starting points, ik  and ik0  stand for the drag coefficients of 

the rotors. Respectively, the subscript “1” refers to the first driver while “2” to the second one. If 
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0 

we allow for such a simple linear model of the moments of static characteristics of the drivers, 

then the dimensionless form of Eq. (3.1) can be rewritten such as it follows:  

( ) ( )
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   (3.2) 

where µ  appears in the role of a small parameter of the problem. The parameters 1κ  and 2κ  are 

of order of unity such that 11 µκµ =  and 22 µκµ = , where ( )212 mmrm iii +=µ . We introduce 

new notations: ( ) 010 / ωJkka iii += , 2
0/ ωiii JMb = , ii Jrrmc 4/)( 21 +=  ( 2,1=i ). Here, 

mp /0 =ω  is the oscillation frequency of the base in the absence of the devices, 

( ) ( )21021 / mmqrrd ++= ω  is the dimensionless damping coefficient, x  is the new dimensionless 

linear coordinate measured in fractions of the radius of inertia of the eccentrics. The set (3.2), in 

contrast to the original equations, depends now on the dimensionless time t0ωτ = .  

The problem (3.2) admits an effective study by the method of a small parameter. In order to ex-

plore this one, we should transform the system (3.2) to a standard form of the six equations re-

solved for the first derivatives. The intermediate steps of this procedure are the follows ones. 

Firstly, we introduce the new variables y , 1ϖ , 2ϖ , associated with the initial dependent vari-

ables by differential relations: yx =& , 11 ϖϕ =& , 22 ϖϕ =& . Assume that 0=µ  in the set (3.2). Then 

one defines the transform to the new dependent variables based on the method of varied con-

stants: ( ) ( )ταττϕ += , ( ) ( ) ( )ττντϖ 111 exp a−= , ( ) ( ) ( )ττντϖ 222 exp a−= , ( ) ( )τβττϕ 111 +Ω= , 

( ) ( )τβττϕ 222 +Ω= , where ( ) ( ) ( )τφτρτ sin=x  and ( ) ( ) ( )τφτρτ cos=y , 1Ω  and 2Ω  are the par-

tial angular velocities of devices. Here, ( )τρ , ( )τα , ( )τν1 , ( )τν 2 , ( )τβ1 , ( )τβ2  are the six new 

variables of the problem.  

The sense of these new variables is following: ( )τρ , ( )τα  are the amplitude and phase of base 

oscillations, respectively, ( )τβ1 , ( )τβ2  are the angles and ( )τν1 , ( )τν 2  are the angular velocities 

of the rotors. The standard form suitable for further analysis is ready. Because of large records, 

this standard form is not given, but the interested reader can trace in detail the stages of its deri-

vation [36]. Solution of the system in a standard form is solved as transform series in the small 

parameter:  
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      (3.3) 

Here the kernel expansion depends upon the slow temporal scales τµ n
nT = , which characterize 

the evolution of resonant processes. The variables with superscripts denote small rapidly oscillat-

ing correction to the basic evolutionary solution.  

Then it is necessary to identify the resonant conditions in the standard form. The resonance in the 

system (3.2) occurs within the first-order nonlinear approximation theory, when 1~1Ω  or when 

1~2Ω  or if the both parameters 2Ω  and 2Ω  are close to unity. All these cases require a separate 

study. Now we are interested in the phenomenon of the phase synchronization in the system 

(3.2). This case, in particular, is realized at 1~ 12 ≠ΩΩ , though the both partial angular veloci-

ties should be sufficiently far and less than unity, in order to overcome the instability predicted 

by the Sommefeld effect, since the first-order approximation resonance is absent in the system 

(3.2) in this case. Such a kind of resonance is manifested in the second approximation only.  

In addition to the resonance associated with the standard phase synchronization in the system 

(3.2) there is one more resonance, when 0~2 21 Ω−Ω− , which apparently has no practical sig-

nificance, since its angular velocities fall in the zone of instability. 

Note that other resonances in the system (3.2) are absent within the first-order nonlinear ap-

proximation theory. The next section investigates these cases are in detail. 

Matching condition 0~12 Ω−Ω  

After the substitution the expressions (3.3) into the standard form of equations and the separation 

between fast and slow motions within the first-order nonlinear approximation theory in small 

parameter µ  one obtains the following information on the solution of the system. In the first ap-

proximation theory, the slow steady-state motions (when ∞→τ ) are the same as in the lin-

earized set, i.e., const=ρ , const=α ; const1 =ν , const2 =ν ; const1 =β ; const2 =β . This 

means that the slowly varying generalized coordinates ρ , α , 1ν  and 2ν , 1β  и 2β  do not depend 

within the first approximation analysis upon the physical time τ  nor the slow time 1T . Solutions 
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to the small nonresonant corrections appear as it follows: namely, there are small additions to the 

amplitude and phase of the elastic base:  
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(3.4) 

additions to the angles of rotation of rotors: 
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(3.5) 

and those to the angular velocities, as well: 
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(3.6) 

This solution describes a slightly perturbed motion of the base with the same frequencies as the 

angular velocities of rotors that is manifested in the appearance of combination frequencies in 

the expression for the corrections to the amplitude and phase (3.4). Corrections to the angles 

(3.5) and velocities (3.6) also contain the similar small-amplitude combination harmonics at the 

difference and sum.  

Now the solution of the first-order approximation is ready. This one is not suitable for describing 

the synchronization effect and call to continue further manipulations with the equations along the 

small-parameter method. Using the solution (3.4–3.6), after the substitution into the standard 

form, with the help of expressions (3.3), one obtains the desired equation of the second-order 

nonlinear approximation, describing the synchronization phenomenon of a pair of drivers on the 

elastic foundation. So that after the second substitution of the modified representation (3.3) in the 

standard form and the separation of motions into slow and fast ones, we obtain the following 

evolution equations 
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where ( ) ( ) ( ) 1122222212 // aaTTTT Ω−Ω+∆−−=Ψ ϕϕ  is the new slow variable; 21 Ω−Ω=∆  de-

notes the small detuning of the partial angular velocities ( ( ) 2
21 / µδ Ω−Ω= ); 2/ µdD = is the 

rate of energy dissipation. The coefficients of Eq. (3.7) are following: 
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Let the detuning be zero, then these equations are highly simplified up to the full their separa-

tion:  
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Equations (3.7) represent a generalization of the standard basic equations of the theory of phase 

synchronization [37], whose structure reads  
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Formally, this equation follows from the generalized model (3.7), if we put ρ = 0, then the gen-

eral solution has the form  
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where C  is an arbitrary constant of integration. This solution implies the criterion of the stable 

phase synchronization:  

022 <− Qδ             (3.9) 

which indicates that in the occurrence of the stable synchronization the phase detuning must be 

small enough, compared with the phase modulation parameter. If this condition is not satisfied, 

then the system can leave the zone of synchronization. 

On the other hand, the refined model (3.7) says that for the stable synchronization the perform-

ance of the above conditions (3.9) is not enough. It is also necessary condition that the coeffi-

cient of the resonant excitation S  of vibrations in the base should not exceed the rate of energy 

dissipation D , i.e., DS < . The last restriction significantly alters the stability zone of synchro-

nization in the space system parameters that is demonstrated here on the specific computational 

examples.  

Table 3.1  Parameters of stable and unstable regimes of synchronization 

 µ  1c  2c  1κ  2κ  1a  2a  1Ω  2Ω  
22 Q−∆  

S  
1 0.1 1 1 0.5 0.5 1 1 0.751 0.75 -0.244 -0.204 
2 0.1 1 1 0.5 0.5 1 1 0.251 0.25 -0.072 0.008 
3 0.1 1 1 0.6 0.4 1 1 0.25 0.25 -0.075 -0.001 
4 0.1 1 1 0.6 0.4 1 1 0.251 0.25 -0.075 0.009 
5 0.1 1 1 0.6 0.4 1 1 1.25 1.25 0.239 -0.085 
6 0.1 1 1 0.5 0.5 1 1 0.26 0.25 0.998 -0.007 

Examples of stable and unstable regimes of synchronization 

The table shows the calculation of the different theoretical implementations of stable and unsta-

ble regimes of the phase synchronization (Table 3.1). The example 1 (see the first line in the ta-

ble) demonstrates a robust synchronization with a small mismatch between the angular velocities 

of drivers, 1.0=δ . The example 2 (see, respectively, the second line in the table, etc.) displays 

an unstable phase-synchronization regime at the same small difference between the angular ve-

locities, i.e., 1.0=δ . One can reach a stable steady-state synchronization pattern in this example 

by adding a damping element with the coefficient 0.008≥D . The example number 3 is a robust 

synchronization for the small differences in eccentrics ( 2.021 =− κκ ) and equal angular veloci-

ties. The example number 4 is an unstable synchronization mode with the same small differences 

in eccentrics ( 2.021 =− κκ ) and small mismatch in angular velocities, i.e., 1.0=δ . One can 

reach a stable regime in this example by adding a dissipative element with the damping coeffi-
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cient 0.009≥D . The example number 5 is an unstable synchronization regime. One cannot 

reach any stable synchronization regime in this example, it is impossible, even when adding any 

damping element. The example number 6 is an unstable regime of synchronization at different 

angular speeds. It is also impossible to achieve any sustainable sync mode in this case. 

Matching condition 0~2 21 Ω−Ω−  

After substitution from the expressions (3.3) into the standard form of Eq. (3.2), separation of 

fast and slow motions within the second-order approximation in the small parameter µ , under 

the assumption that 02 21 ≈Ω−Ω− , one obtains the following evolutionary equations  
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where ( ) ( ) ( ) ( ) 22112222212 //2 aaTTTTT Ω−Ω−∆−−+=Ψ αϕϕ  is the new slow variable 

( 212 Ω−Ω−=∆ ); ( ) 2
21 /2 µδ Ω−Ω−=  is the small detuning. The coefficients of Eq. (3.10) are 

as it follows:  
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The resonance of this type, as already mentioned, has no practical significance. Let the detuning 

be zero, then these Eq. (3.10) are highly simplified up to the full their separation:  
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The formal criterion of stability is extremely simple. Namely, the coefficient of the resonant ex-

citation of vibrations in the base S exceeds no the rate of energy dissipation D , i.e. DS< , but 

the synchronization is awfully destroyed at any positive values of other parameters.  
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Resume 

Synchronous rotations of drivers are almost idle and required no any high-powered energy set in 

this dynamical mode. Most responsible treatment for the drivers is their start, i.e., a transition 

from the rest to steady-state rotations [38]. So that, the utilizing vibration absorbers for high-

powered electromechanical systems has advantageous for the two main reasons. On the one 

hand, it provides a control tool for substantially mitigating the effects of transient shocking loads 

during the time of growth the acceleration of drivers. This contributes to integrities of the elec-

tromechanical system and save energy. On the other hand, there is an ability to configure the ap-

propriate damping properties of vibration absorbers to create a stable regime of synchronization 

when it is profitable, or even get rid of him, to destroy the synchronous movement, creating con-

ditions for a dynamic interchange of drivers.  
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THERMO-MECHANICAL INSTABILITY IN VIBRATION 
ABSORBERS 

We analyze a problem of the thermo-mechanical instability caused by small changes of a viscous 

damping in vibration absorbers. The nonlinear coupling between the oscillations and temperature 

takes place due to a linear thermal dependence of the coefficient of energy dissipation. This pro-

vides typical phase– amplitude frequency patterns inherent in unstable regimes. While the damp-

ing coefficient decreases with the increase in the temperature, the effect of bifurcated oscillations 

can be exhibited brightly as some abnormal operating regimes. The vibration absorber appears as 

a complex dynamical system, behaving strongly upon the ambient temperature. Typical thermo-

mechanical instability patterns are traced in detail within a parametric analysis along an approach 

closed to the Lie method. This study would explain some unwanted dynamical effects accompa-

nying the utilizing of vibration absorbers. 

On the one hand, dynamic tests can exhibit abnormal operating regimes accompanied with some 

overheating of a fluid contained in vibration absorbers. As a result, the amplitude of oscillation 

can increase dangerously. While on the other hand, the functioning may be quite satisfactory 

even under almost the same experimental conditions. From a physical viewpoint, it is obvious 

that the overheating causes a decrease in the fluid viscosity, so that the amplitude of oscillations 

increases, and then, the efficiency of the set is reduced. These specified abnormal operating re-

gimes require some theoretical explanation. The present study is an attempt along this way. 

Equations governing the motion of a spring pendulum possessing a sufficiently large coefficient 

of energy dissipation play the role of the simplified mathematical model of the vibration ab-

sorber. It is assumed that the coefficient of energy dissipation depends upon the ambient tem-

perature. Simple temperature dependence between the energy dissipation and temperature char-

acteristics is proposed as a linear function with a small slope, which enter both into the heat bal-

ance equation and that describing mechanical vibrations. The equations of the mathematical 

model are investigated using a small-parameter method under the assumption that the external 

harmonic excitation is moderate so that it cannot cause significant large-amplitude nonlinear os-

cillations. The thermal dependence of the dissipative function is assumed to be small, as well. 

The study of steady-state oscillatory modes reveals dynamic processes treated as dangerous from 

a viewpoint of the operation of vibration absorbers. These are explicable in terms of the thermo-

mechanical instability of a dynamical system near the resonance. 
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A physical picture of dynamic processes in the vibration absorber is very simple. A drop in the 

viscosity leads to some increase in the amplitude, which contributes to some additional heat por-

tion. This heat causes some decrease in the viscosity, so that the heat injection should be re-

duced. It is clear that such a process should be saturated and would approach some stationary 

state. However, the system under consideration, being nonlinear, has hysteretic steady-state re-

gimes of motion, which can lead to dangerous oscillations even being far from the resonant fre-

quency. Such a situation is modeled by specific examples within a parametric analysis performed 

to identify the most impact oscillatory patterns. These should help understanding how to use 

these properties in practice when we investigate a complex technical system, which meets both 

the electromechanical [1] and thermo-mechanical phenomena, as a rule. 

Problems of the thermo-mechanical stability are of interest for researchers both on traditional 

and new areas. For example, the problems of ultrasonic techniques [39], phase transitions in aus-

tenite microstructures [40], the dynamics of materials with memory [41], oscillations in electro-

mechanical systems [42] call some adequate description between the thermal and mechanical 

effects. Questions of the thermo-mechanical stability in the light of the vibration absorbers have 

not been methodically studied, being usually restricted by most researchers to some purely me-

chanical models [43, 44]. The present study represents an attempt to draw readers’ attention to 

this subject, especially supposing high perspectives in magneto-rheological materials [45] com-

bined with active control techniques to provide high effective solutions in a problem of reducing 

the vibrations in mechanical structures.  

A hydraulic vibration absorber contains the working and compensation chambers with a viscous 

liquid. The elastic properties of the hydraulic absorber are formed by the conical shell-shaped 

elastomer wall and membrane. A damping of vibrations inside the absorber is due to the dissipa-

tion of energy of turbulent fluid flowing to and fro in the chambers through the bypass channels 

(Fig. 4.1). These turbulent flows can lead to the cavitation phenomenon at sufficiently large ex-

ternal loads. It is believed that the cavitation plays the principal role in seal failures of hydraulic 

absorbers [46]. Though, this fact can obtain some different explanation. 
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Fig. 4.1  A hydraulic absorber: 1 – support plate, 2 – conical shell-shaped elastomer wall, 3 – 
liquid chambers, 4 – bearing, 5 – elastic membrane, 6 – pallet, 7 – bulkhead, 8 – throttle channels 
[46]  

During the collapse of cavities in a liquid, shock waves can be generated at the ultrasonic fre-

quencies. The thermodynamics of these waves is non-trivial enough. The collapse of cavities can 

be accompanied by an adiabatic expansion and cooling of the surrounding liquid in a small 

neighborhood of the lost cavern, but the temperature can dramatically increase in the center. Al-

though, the total liquid bulk is heated slowly, but steadily, like during an ultrasonic washing. 

Apparently, this thermal effect is not so significant in terms of the correct functioning of hydrau-

lic absorbers.  

However, the shock waves contribute to the erosion of solid surfaces of the structure. The liquid 

is enriched with a suspension of very small solid particles. The viscosity of this emulsion drops 

due to the temperature rise, the heat capacity is reduced, but the thermal conductivity increases. 

The increase in the temperature reduces cavitation risks [47]. But under the resonant excitation 

of the system at a critical value of viscosity, the temperature rise within the liquid may cause 

large-amplitude oscillations that can lead to seal failures in the hydraulic absorbers. The present 

study would show that such processes can really take place.  
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We trace the influence of temperature effects upon the amplitude–frequency dependence describ-

ing the steady-state oscillations in vibration absorbers. The equations governing motion are 

based on the most basic general physical considerations, which are briefly mentioned in the in-

troduction:  
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where the reduced coefficients of the vibration absorber are following:m  is the mass; δ  is the 

damping coefficient c  is the coefficient of elasticity; α  is the thermal coefficient of viscosity; 

β  is the coefficient of elasticity, which characterizes an asymmetry of deformations; V  stands 

for the volume; P  denotes the static load; p  is the maximal value of the external harmonic force 

at the frequency ω; µ  is the small dimensionless parameter. These equations, making allow-

ances for the thermal balance, are also characterized by the following parameters: C  is the heat 

capacity; G  is the thermal conductivity; ( )tx  denotes the displacement; ( )tT  stands for the tem-

perature and 0T  is the ambient temperature. We determinate the static deformation under the 

static load: ββ cPcc 2/42 −+−=∆ , and the natural frequency of oscillation in the absence of 

energy dissipation, ( ) mPc /42 βϖ −= . Then, the following dimensionless variables are in-

troduced: 
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Here 3 Vl =  is the characteristic length scale. The equations of motion in these dimensionless 

variables can be rewritten as  
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   (4.1) 

Upper dots denote a differentiation with respect to the dimensionless time τ . The general solu-

tion to the linear subset (4.1), as 0→µ , is given by the expressions  
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Here, A  is an arbitrary complex constant (A  corresponds to the complex conjugate); B  is a real 

arbitrary constant; ( ) mTm /1 2
0

222 αδϖ −−=Ω  denotes the resonant frequency at which the 

linear system reaches the amplitude peak at the same frequency of the external excitation.  

Evolution equations 

To construct the first-order nonlinear approximation asymptotic solution as series in the small 

parameter µ , the paradigm of the method of arbitrary constant variations is used: 
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Here ( ) ( )( )τϖϖαδτφ //1 0 Ω+−−= imT  is the phase (( )τφ  denotes the complex conjugate). All 

old constants are now varying at the time: ( )τAA = , ( )τAA = , ( )τBB = ; the functions ( )τju , 

( )τjv , ( )τjw  ( 1,0=j ) represent the so-called nonresonant corrections. The order is determined 

by the index j  which should be fully compatible with a standard expansion of the sought func-

tion as series in µ . The nonresonant corrections are introduced to construct an asymptotic solu-

tion by an appropriate recursive method, due to the smallness of the parameter µ .  

The polar coordinates, ( )τa  and ( )τϕ , are introduced:  
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This transform allows tracing the so-called ”fast” and ”slow” motions near the resonance pro-

vided that the external excitation of the system (4.1) is small. The ”fast” variable is characterized 

by the frequency of the external harmonic force ω , while the new phase coordinate 

( ) ( ) ( ) ϖτωτϕτψ /Ω−−=  plays as the “slow” one, where the difference Ω−ω  is associated 

with the phase-matching condition, i.e., ( )τψ  should be a small value of order µ . After substi-

tuting (4.3) and (4.4) into Eq. (4.1), the averaging procedure provides the following zero-order 

approximation evolution equations  
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The stationary solution to the set (4.5) is obtained by equating all the derivatives to zero: 
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where 0a  , 0ψ  and 0Θ  denote the steady states to the variables a, ϕ and γ, correspondingly.  

The equations describing the zero-order nonresonant corrections read:  
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 (4.7) 

After finding a particular solution to Eq. (4.7), the zero-order approximation is completely built. 

It is obvious that the zero-order approximation stationary solution, in terms of the substitution 

(4.3), coincides exactly with the corresponding solution to the original linear subset (4.1). 
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To construct the nonlinear first-order approximation evolution equations, we can again use the 

same substitution (4.3), pointing out that the zero-order nonresonant correction is already known 

as the particular solution to the inhomogeneous linear differential set (4.7). 

The evolution equations within the first-order nonlinear approximation hold true:  
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The coefficients entering these equations are following:  
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The structure of the evolution Eq. (4.8) is transparent enough. It is obvious that the intensity of 

the thermo-mechanical effect is determined by the small parameter µ. If this parameter is zero, 

then there is no temperature effect on the mechanical motion. If we assume the thermal viscosity 

parameter to be zero, then the coefficients 11γ , 12γ , 13γ  and 21γ , 22γ , 23γ  should be also zero in 

the equations for the amplitude and phase. There is no temperature effect on the mechanical mo-

tion again. Let us remove these limiting cases from consideration, and then the nontrivial nonlin-

ear thermo-mechanical coupling becomes apparent.  

Phase–amplitude frequency response with thermal effects 

The equations determining the steady-state oscillatory modes follow directly from the evolution 

Eq. (4.8) if we put all the velocities equal to zero. As a result one obtains the set of three tran-

scendental equations for the same number of unknowns a
)

, ψ)  and Θ
)

:  
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The unknown quantities a
)

, ψ)  and Θ
)

 characterizing the amplitude, phase and the temperature, 

respectively, can be parameterized in different ways. Let these be the functions of the external 

frequency ω . Then, one can build the so-called amplitude–phase frequency curves, taking into 

account temperature effects. For clarity, we may consider the specific values of individual pa-

rameters to the system (4.1). Let the values of these parameters are: 36105.39 mV −×= ; 

kgm 5.0= ; 14105 −×= Nmc ; skg /100=δ ; NP 310= ; Np 500= ; 1310 −−= Kα ; 114.3 −= mβ ; 

KsmkgC 23 /10= ; 31210 −−= mWKG ; KT 3000 = ; ml 0.034= . Then, there is the possibility to 

trace the behavior of the amplitude and phase characteristics of the stationary processes depend-
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ing upon the small parameter. The steady-state characteristics when the parameter is small 

enough, e.g., 210−=µ , are shown in Fig.4.2. The frequency in all the pictures is normalized by 

the value Hz 294.2=ϖ , so that the maximal amplitude should be near unity. The amplitude, 

( )νa
)

, and temperature, ( )νΘ
)

, are presented as functions of the dimensionless frequency 

ϖων /= . 

It is obvious that the set of stationary states is composed of two distinct subsets, namely H and 

L , which we call the high- and low-temperature branches, respectively. The amplitude– and 

phase–frequency branches, characterizing the low-temperature subset L , are almost indistin-

guishable from the related curves (4.6), characterizing the linear subsystem. At the same time, 

the high-temperature subset H appears entirely due to the nonlinearity. This subset consists of 

both stable and unstable fixed points separated by limits where the derivatives become infinite. 

Obviously, the stable stationary regimes H cannot be reachable from any initial conditions. For 

example, to excite any stable high-temperature stationary regime, the liquid inside the absorber 

should be pre-heated up to some predetermined temperature. Moreover, the frequency of the ex-

ternal harmonic signal should be placed within the specified band. At the same time, the station-

ary regimes, correspondent to the low-temperature subset L,  are achieved almost at any initial 

conditions. Let the small parameter µ increases. How significant are the changes over the ampli-

tude and temperature characteristics? The low-temperature branch L changes slowly. The ampli-

tude varies slowly than the temperature, but the resonance peak is shifted slightly into the high-

frequency band. In turn, the high-temperature branch H changes very rapidly with the growth of 

the small parameter µ . Starting with a certain critical value of this parameter, the high-

temperature characteristic H is united with the low-temperature branch L . This causes the 

thermo-mechanical instability of the system, which is expressed in a high jump in the oscillation 

amplitude and a significant increase in the temperature in the vicinity of the resonance frequency 

and even some higher, as well. Figure 4.3 illustrates the stationary states near the critical point. 

The path (a, b, c, d, e, a) in this figure represents the hysteresis loop when the external frequency 

is scanned to and fro. The system under consideration (4.8) is complex enough to evaluate ana-

lytically their stability proper- ties. Nonetheless, numerical tests can confirm oscillatory patterns 

naturally observed in systems with a hysteresis. Point out that the thermo-mechanical instability 

in vibration absorbers is obviously unacceptable in practice. 

Moreover, we should not forget that Fig. 4.3 demonstrates the results provided by the first-order 

approximation nonlinear model (4.8). Though, direct numerical calculations of the original equa-

tions of motion (4.1) in some characteristic points confirm that the thermo-mechanical instability 
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actually takes place. It turns out that the solution to the first-order nonlinear approximation Eq. 

(4.8) practically coincides with those of the initial problem (4.1) at small amplitudes in the vicin-

ity of the resonant frequency. Some discrepancies between the exact and approximate solutions 

naturally become solid with increasing in the external periodic load. It means that the second-

order nonlinear approximation equations play an actual role from the viewpoint of a more de-

tailed description of the frequency–amplitude dependences. But this question, being a nontrivial 

one, is beyond the scope of present study. 

a b 

Fig. 4.2  Amplitude (a) and temperature (b) as functions of the dimensionless frequency ν   

a b 

Fig. 4.3  Thermo-mechanical instability. Amplitude response (a) and temperature (b) versus the 
dimensionless frequency ν . Numbers mark different values of the small parameter µ   
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Parametric analysis of the stationary solutions 

To carry out a parametric analysis of stationary solutions to the nonlinear evolution equations of 

the first-order approximation, the left-hand side of Eq. (4.9) are indicated as it follows:  
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The unknown quantities a
)

, ψ)  and Θ
)

describing, as before, the amplitude, the phase and tem-

perature, respectively, are now considered to be smooth functions of the small parameter µ. The 

functions ( )Θ
)))

,,ψaP , ( )Θ
)))

,,ψaQ  and ( )Θ
)))

,,ψaR are differentiable almost everywhere in the space 

of the system parameters. Then, the parametric analysis of stationary solutions is available with 

the help of the Lie series [23,48]. These functions P , Q  and Rshould be once differentiated by 

the variable µ in Eq. (4.9), then these equations are resolved to the implicit set for the first de-

rivatives. The result appears as the following three ordinary differential equations  
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It is obvious that expression (4.10) represent explicit solutions to the set (4.11) with the initial 

conditions defined by the known parameters ( )0a
)

, ( )0ψ)  and ( )0Θ
)

. These parameters are com-

pletely determined by the right-hand sides of Eq. (4.6), i.e., ( ) 00 aa =)
, ( ) 00 ψψ =)

 and ( ) 00 Θ=Θ
)

. 

The structure of these equations is not so easy, but it can be effectively studied in detail using 

available parsing algorithms [49]. Point out that explicit solutions to Eq. (4.11) may be repre-

sented with the help of the Lie series:  
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a Ba  is the differential opera-

tor. 
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Dependence of steady-state solutions upon the small parameter µ  

The numerical result to Eq. (4.11) is shown in Fig.4.4, as an illustrative example. The values of 

the system parameters are the same as previously. The peaks of the displacement and tempera-

ture are formed even away from the resonant frequency Ω , as we can see in Fig.4.4. A typical 

resonant pattern should take place when the frequency of the external signal ω tends to the reso-

nant frequency of the system Ω . At the same time, the amplitude peak, accordingly to the linear 

theory, is near the resonant frequency Hz6.125=Ω , while the natural frequency should be about 

Hz2.294=ϖ  in the absence of damping. It means that there is a frequency shift caused by the 

nonlinearity. This one is described mainly by the term Θ
)

23µγ , entering into the equation for the 

”slow” phase of the set (4.7). This one is resumed as if the system (4.1) tends to approach in 

vacuo pattern due to such a kind of compensation. 

Steady states versus the nonlinear elastic parameter β  

The steady states obtained by scanning the parameter β characterizing the asymmetry of the elas-

tic characteristics are shown in Fig.4.5. There is no significant impact on the dynamics of the vi-

bration absorber even with a significant change in this parameter. This result is generally con-

firmed by experimental tests with the vibration absorbers. In fact, the static deformation appears 

in the presence of the static load P  only. This means that the natural frequency of oscillation in 

the absence of energy dissipation, ( ) mPc /42 βϖ −= , changes slowly with the growth of the 

static load P , namely, as a square root, if the first-order nonlinear approximation analysis is 

considered. Though, the so-called self-action effect, inherent in, say, the well-known Düffing-

type equations, should be assuredly manifested when deriving the second-order nonlinear ap-

proximation evolution equations.  

Steady states versus the static load P  

The steady states along the variable parameter P , characterizing the static load, are illustrated in 

Fig.4.6. It is clearly that the static load does not influence significantly on the dynamics of the 

vibration absorber. This is generally confirmed in practice.  

Steady states versus the damping coefficient δ  

The steady states at various values of the damping coefficient δ  are shown in Fig.4.7. As we can 

observe, the thermo-mechanical instability can be suppressed by large values of the damping pa-

rameter, for instance at kg/s 190 =δ . Though, if this parameter exceeds the damping limit 
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kg/s 210.12 * =δ , then the system (4.7) cannot be treated as the oscillatory one, because of ex-

ponential dynamical patterns, if the eigenvalue problem is considered. Point out that such pat-

terns with awfully transient dynamics are usually unacceptable in practice of vibration absorbers. 

At small values of damping, as kg/s 100 =δ , the path (a, b, c) indicates stable steady- state re-

gimes in direct scanning over the small parameter µ , while those are denoted as (c, d, a) in the 

case of the reverse tracing that is shown in Fig.4.7.  

 

a b 

c 

Fig. 4.4  Stationary solutions. Amplitude (a), phase (b) and temperature (c) versus the small pa-
rameter µ . Numbers mark the calculated values of the external signal frequency ω  in Hertz  
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a b 

 

c 

Fig. 4.5  Stationary states. Amplitude (a), phase (b) and temperature (c) versus the small parame-
ter µ. Numbers mark the calculated values for the nonlinear elasticity β  (units m-1)  
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a b 

c 

Fig. 4.6  Stationary states. Amplitude (a), phase (b) and temperature (c) versus the small parame-
ter µ . Numbers mark the calculated values of the static load P  (units Newton)  

a b 
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c 

Fig. 4.7  Stationary states. Amplitude (a), phase (b) and temperature (c) versus the small parame-
ter µ . Numbers mark the calculated values of the damping coefficient δ   

Resume 

A mathematical model describing the thermo-mechanical instability in the vibration absorbers 

have been traced in this chapter. This instability is caused by the nonlinear resonant phenomena. 

The temperature of the fluid inside the vibration absorber increases under the external harmonic 

excitation, so that the viscosity decreases, while the amplitude of mechanical vibrations in-

creases, as well. However, the decrease in the viscosity restricts the heat injection. This leads to 

the nonlinear steady states. In the vicinity of the resonant frequency, the system exhibits brightly 

expressed amplitude–frequency dependences, which provide some hysteretic patterns of oscilla-

tions. Parametric analysis of the system reveals that the thermal viscosity parameter appears as 

the most sensitive parameter from the viewpoint of the thermo-mechanical instability. This pa-

rameter approaches a critical value at sufficiently small variations in the system. This means that 

the using of liquid materials with a very small thermal viscosity coefficient is absolutely ineffec-

tive for the vibration absorber, since any inner matter, such as particles of metal or polymer, can 

easily increase the value of the thermal viscosity up to the critical value. This can lead to un-

wanted and uncontrolled dynamical patterns. 

The model of the thermo-mechanical instability proposed in the present study is extremely sim-

ple, though being not so trivial in terms of the used algorithms [49]. It is clear that some aspects 

of the problem should be improved using numerical methods [50] with allowances for more ap-

propriate physical relationships between the viscosity and temperature [51], some various effects 

of nonlinearity are of high interest [52, 53], as well.  
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GEOMETRICAL NON-LINEARITY STABILIZES A WAVE 
SOLID-STATE GYRO 

It was recognized long ago that quasi-harmonic standing waves in a thin-walled axisymmetric 

resonator, mounted on a rotating platform, are subject to a precession. This significant phenome-

non is naturally associated with a concept of a solid-state wave gyro, or an inertial instrument 

used to measure angular rotation rate, as if any wave may be interpreted as a material particle 

moving in a rotating frame of reference. Because there are no typical mechanical parts, these 

wave sensors can be utilized with a lot of advantages. To run such a gyro in vita, one should ex-

cite and keep on by certain means a standing wave in the thin-walled axisymmetric resonator. Up 

to now, there are known two ways how to do it, and namely, using either external or parametric 

resonant mechanisms of excitation. Although both cases necessarily require an additional feed-

back control device in order to stabilize instable or other parasite oscillations of the resonator. 

This chapter, following the study of nonlinear waves in a thin circular ring, demonstrates that the 

solid-state wave gyro may be naturally stabilized just at the expense of the geometrical nonlin-

earity by combining advantages of both the positional resonant excitation and the parametric 

resonance.  

Modern solid-state wave gyros based on hemispherical high-purity quartz resonators are associ-

ated with satellite guidance systems intended for long-term missions extending up to 15 years 

[54]. It was found long ago that any flexural standing mode in a rotating thin-walled axisymmet-

ric resonator is subject to a precession, because of the so-called wave inertia effect [55]. This 

means that the precessing wave responds effectively on the rotation, like a material point tends to 

conserve the spatial position in an inertial frame of references. The wave mode turns about the 

symmetry axis of the resonator with the angular velocity, ( )θκ n , against the platform rotating 

with the angular velocity θ . Here, ( )nκ  denotes a negative-definite function describing, in par-

ticular, specificities of the resonator geometry. This coefficient depends sensitively upon the pro-

file of the precessing standing mode with the wave number n . For instance, experiments with 

the primary flexural waveform ( 2=n ) in a small hemispherical shell, rotated after the wave ex-

citation about the sensitive axis at the angle 2/π , showed that the summary angle of rotation of 

this mode is about o63  [55]. This example serves as a prototype of an angle sensor. The principle 

of operation of this sensor is based, accordingly to the wave-participle dualistic paradigm, on the 

inertia of waves in solids. Such a gyro possesses a lot of advantages compared to a conventional 

one [56–58], because of absence of typical mechanical parts.  
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For operating the wave solid-state gyro, the system should be forced to vibrate in a flexible mode 

of the axisymmetric resonator. The amplitude of these oscillations has to be maintained on some 

acceptable level in the presence of energy dissipation. The presence of damping requires pump-

ing permanently the energy into these oscillations by external forces. There are known two main 

schemes for the wave excitation, using the presence of energy dissipation. The presence of 

damping requires pumping permanently the energy into these oscillations by external forces. 

There are known two main schemes for the wave excitation, using the resonant properties of dy-

namical systems [56]. The first type is called a positional excitation. This means that the external 

force is modulated harmonically, both in the time and in the space, with the spectral parameters 

which should be close to the corresponding parameters of a driven mode in the resonator. The 

second kind is associated with a parametric excitation of vibrations, when the periodic variation 

in some suitable parameter of the system, e.g. the midline tension of the axisymmetric resonator, 

is homogeneous one with respect to the circumferential coordinate. The spectral parameters 

should also be comparable with those of the driven oscillatory mode of the resonator. In the first 

case, resonantly forced oscillations occur at any value of the external excitation. However, the 

excited standing wave is spatially glued to the base of the resonator. Consequently, the wave 

gyro cannot measure the applied rotation rate permanently, but just before the decaying, because 

of energy dissipation, flexural mode may be reliably recognized. In the second case, there is a 

threshold of excitation, such that if the level of excitation is small enough, then the parametri-

cally excited vibrations do not occur, but if this threshold is slightly exceeded, the motion be-

comes unstable. Therefore, an additional device is necessary to stabilize the gyro. This study 

shows that the wave gyro can stabilized naturally due to the geometrical nonlinearity of the thin-

walled resonator. To reach this conclusion, one should build a structural model of the wave gyro, 

which has to establish a relationship between the parameters responsible for the nonlinear phe-

nomena, the external driving, and energy dissipation. There is no doubt that the wave gyro may 

be represented by a thin circular ring in the simple case.  

Equations governing the motion in a thin circular ring  

Let us consider plane vibrations of a thin ring of the thickness h  and the radius R , which can 

rotate with an angular velocity ( )tθ  about the sensitive axis. The dynamical processes are studied 

in the long-wave approximation. To derive the equations of motion, one can use the theory of 

thin-walled shells based on the Kirchhoff–Love hypotheses. The distribution of displacements 

inside the ring can be written as it follows [59, 60]:  



 73 

( ) ( ) ( ) ,;/ wuRvwvu ss =−−= ςς  

where ( )tsvv ,=  and ( )tsww ,=  are the circumferential and radial displacements, correspond-

ingly, dependent upon the circumferential coordinate s and the physical time t . These are 

measured from points located along the midline of the ring at the distance ς  in the frame of ref-

erence associated with the rotating platform. Expression for the densities of the kinetic energy K 

and the potential energy are given by the following forms  
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where E  stands for the Young’s modulus; F  denotes the cross-section square; ρ  is the mass 

density; κ  is a tunable coefficient characterizing the stiffness between the rotating platform and 

the ring; ( ) 2/// 2
sssssss wRvwRwve +−++= ξ  denotes the circumferential deformation. Equa-

tions governing motion possess the following variational form  
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where Π−Κ=L  is the Lagrangian density; ( )vQ  and ( )wQ  denotes the external forces; Kη=R  

is the energy dissipation function of the rate η . The explicit form of these equations, provided 

that the damping is neglected, reads as follows:  
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where RwvV s /+=  and RvwW s /−=  are introduced for brevity. After the introducing the 

dimensionless variables: '0vuv = ; '0wuw = ; Rs/=ϕ ; cRt /τ= ; cR /' θθ = , where 

( )22
0 max wvu += ; ρ/Ec =  stands for the typical wave propagation velocity; 12/ha =  

is the radius of inertia of a cross-section, Eq. (5.2)can be rewritten in the form:  

( ) ( )
( ) ( )[ ] ( ) ( ).2/2/2

;
2

2

322212

22221

v

v

QwwVwWVwvvw

QwvWVvwwv

++−=+++−+−

+=++−−+++

−

−

ϕϕϕϕϕϕϕϕ

ϕϕϕϕϕ

µµεµθθθ

µκεθµθθ

&&&&

&&&&

 (5.3) 
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where 112/ <<= Rhε  characterizes a small thickness of the ring; 1/0 <<= Ruµ  is a small 

parameter introduced as a bookkeeping device for procedures of the perturbation analysis13; 

wvV += ϕ  and vWW −= ϕ . Primes indicating the dimensional variables have been omitted. 

The set (5.3) should be complemented by the natural periodicity conditions  

( ) ( ) ( ) ( ).,2,;,2, τπϕτϕτπϕτϕ +=+= wwvv  

Note that the role of the coefficient κ , characterizing the stiffness, is twofold. On the one hand, 

this one plays as a necessary structural element of the gyro. On the other hand, let us suppose 

this parameter to be zero, and then, the motion governed by Eq. (5.3) becomes infinite one due to 

the rotation, at least within the linear approximation, though the dynamical system possesses the 

first integral in this case.  

Dispersion relations  

To study the kinematics of waves under the rotation rate, it is useful to compare the spectrum of 

linear oscillations in a uniformly rotating ring with that in the rest. Let us suppose that the rota-

tion is absent, and then the normal modes of vibrations can be represented by standing waves as 

a superposition of wave pairs traveling toward with the same by absolute values, wave numbers, 

equal frequencies, and identical amplitudes, as well. However, the frequency spectrum of the 

corresponding oscillatory modes is deformed in a rotating ring. This means that one cannot ob-

serve standing modes. Instead, the precessing waves, traveling in accordance with the angular 

rate, appear as a reaction on the rotation. Moreover, some asymmetry appears in the wave polari-

zation vectors14. The precession rate of these waves is proportional to the difference between the 

frequencies in the wave couple resulted as a standing wave, if the ring is in the rest. At the con-

stant angular rate, the wave precession appears as a kinematic effect due to the rotation of the 

platform. Although the expression for the precession will be done below in the case of the uni-

formly rotating ring, nonetheless, it is expected that the result would be generalized for small ar-

bitrary values of the angular velocity and angular acceleration of the rotating platform [56]. Let 

                                                 

13 Formally, the small parameters ε  and  µ  are the same, though the parameter µ  scales simul-
taneously both the amplitudes and the angular rate. The parameter ε characterizes just geometry 
of the problem.  

14 The exception takes place in the case if the midline of the ring resonator is supposed to be un-
stretchable one [56, 61–64].  
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the angular rate of the rotating platform be constant, then a formal oscillatory solution to the lin-

ear subset resulted from Eq. (5.3):  
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has the following form  

( ) ( ) ( ) ( ) ( )ωτϕϕτωτϕ
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, 

where the constant radial displacement is caused by the centrifuge forces; the amplitudes, A  and 

B , are linearly interrelated, i.e., pAB = . The interrelation coefficients, p , are defined by the 

high-and low-frequency branches:  
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The high-frequency branch is indexed by 1=k , while the low-frequency one by the number 

2=k . These coefficients satisfy the orthogonality condition, 1,2,1 −=nn pp , for any wave num-

ber n  (the oscillations are decoupled at 0=n , if the platform is in the rest). Each natural fre-

quency, marked by nk,ω , refers to a normal wave. Absolute values of the interrelation coefficient 

corresponding to the low-frequency branch, which is of interest within the present study, versus 

the modal number are plotted in Fig. 5.1.  

 

Fig. 5.1  The modulus of the interrelation coefficient to the low-frequency branch (ε =0.01, 
κ =0.45, Ω =0)  
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The natural frequencies, nk,ω , are defined by the following dispersion relation  

( ) ( )( ) ( )( ) ( )( ) 01211
222

,
222

,
242222

,
222 =++Ω−Ω+−++Ω+−++ nnpnn nknknk εµµωκεµωκε .  

            (5.6)  

If the angular velocity is zero: 0≡Ω , then this relation turns into the simple biquadratic equa-

tion:  

( ) ( )( ) ( ) 0112 22242222422262 =−++−+−++−−−− κωκωωεωκωεε nnn .    
            (5.7)  

The roots of this dispersion relation (5.7) for the free linear vibrations of the ring are shown in 

Fig. 5.2. The dispersion relation (5.6) possesses four real roots for each n , as well. One pair of 

roots refers in general to the low-frequency flexural modes, while the second one belongs to the 

circumferential ones. In the case of a small angular rate ( nk,ω<<Ω ), the roots of the dispersion 

relation (5.6) may be constructed asymptotically using the Lie series method [65], if one sup-

poses that the frequencies are differentiable functions dependent upon the angular rate. For ex-

ample, the first-order approximation analysis reveals the asymmetry in the natural frequencies at 

the uniform rotation:  
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Fig. 5.2  The high-and low-frequency dispersion branches for waves on the fixed platform 
(ε =0.01, κ =0.45, Ω =0)  
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Fig. 5.3  The dispersion branches, modal number 3=n . Partial sums to the Lie series at ε =0.01, 
κ =0.45. The numbers refer to the order of approximation  

An illustrative example shown in Fig. 5.3 demonstrates that the first-order approximation curve 

is completely enough for definite conclusions in the frame of the present study. Obviously, if 

0≠Ω , then the second term in (5.8) splits the double-degenerated roots to Eq. (5.7). Figure 5.4 

illustrates this in somewhat caricature manner, since the angular rate should be huge enough to 

visualize the change in patterns.  

 

Fig. 5.4  Dispersion diagram for the precessing waves at the uniform rotation (ε =0.01, κ =0.45, 
Ω =10). The solid curves are the same as plotted in Fig. 5.2  
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The roots to the dispersion equation (5.6) are antisymmetric ones with respect to the angular rate: 

( ) ( )Ω−−=Ω nknk ,, ωω . Each frequency, nk,ω , consists of the antisymmetric, ( ) ( )a
nk

a
nk −−= ,, ωω , and 

the symmetric, ( ) ( )s
nk

s
nk −= ,, ωω , parts, i.e., ( ) ( ) ( )s

nk
a
nknk ,,, ωωω +=Ω . Simple estimations show that 

( ) ( )Ω= Oa
nk,ω  and ( ) ( ) ( )2

,, 0 Ω+= Onk
s
nk ωω . The antisymmetric part is satisfactorily approximated 

by the formula (5.8), which determines the wave precession versus the wave number n . It is ob-

vious that in the rest, i.e. 0=Ω , the coupling coefficients (5.5) are antisymmetric functions; 

nknk pp −−= ,, . This causes a formation of a standing mode coupled by a pair of waves traveling 

in opposite directions with the same frequencies and identical amplitudes, although, this symme-

try is broken in a rotating ring. Therefore, standing waveforms cannot exist even at the uniform 

rotation. However, if the angular rate is small in comparison with the natural frequencies, then 

one can interpret the wave motion as a slowly precessing standing waveform, because the 

asymmetry in the coupling coefficients has the same measure as the angular velocity.  

Note that the point 0=n  corresponds to the axisymmetric radial oscillation. This osculation is 

typical one for any axially symmetric resonator. This one is not subject to the Coriolis forces at 

least within the first-order approximation nonlinear analysis15.  

Nonlinear oscillations in a ring  

It is subtle to consider a thin circular ring as a simple model of a solid-state wave gyro, when 

tracing the precession of flexural oscillations in the absence of damping. However, the energy 

dissipation always presents in practice. Therefore, this requires some external feedback control 

to supply the wave motion. All the known types of excitation related to the solid-state wave 

gyro, briefly mentioned in the introduction, are not quite satisfactory from the viewpoint of ac-

tuation, driving, or stability properties. Since the linear theory is not able to achieve the desired 

goal, it is necessary to look for other theoretical tools within the nonlinear wave dynamics. The 

idea is to use the exclusive property of the axisymmetric mode of the ring to control the ampli-

tude of flexural waves in the gyro in the presence of energy dissipation, just to use this one as a 

“mediator” in the dynamical process.  

                                                 

15 The trajectories of points occupying the midline of the ring, involved into the huge uniform 
rotation, move along the elliptic orbits elongated by the Coriolis forces. The corresponding mo-
tions are strictly oriented in the radial direction if the platform is in the rest. 
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Triple-mode resonant interactions  

Let us suppose that the angular rate is small, i.e. ( ) µτθ ~  and 2~/ µτθ dd , then the first-order 

nonlinear approximation solution to Eq. (5.3) can be sought as a resonant triad consisting of the 

axisymmetric radial oscillation and a pair of quasi-harmonic waves [66–68]:  
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     (5.9) 

where ( ) ( )3,1=kTAk  are the slowly varying complex wave amplitude ( µτ=T  is the slow 

time scale); ( )1v  and ( )1w  denote nonresonant corrections supposed to be free of secular terms in 

order ( )TO ; τωϕφ 11 += n ; τωϕφ 12 +−= n ; τωφ 31 =  are the fast rotating phases; ( )*  refers to 

the complex conjugate of the preceding terms. The frequencies 1ω , 2ω , 3ω  and the wave num-

bers n±  satisfy both the dispersion relation (5.7) and the following phase matching conditions 

ωµωωω ∆++= 213           (5.10) 

where ω∆  denotes a small phase matching detuning. The average Lagrangian of the system un-

der consideration is given by the standard formula  
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Let us suppose that this one can be represented as a formal series in .:  

...2
2

10 +++= LLLL µµ  

then the zero-order approximation produces the dispersion relation in the form 00 =L  [69]. 

This means that the term 1L  describes a nontrivial nonlinear case within the first-order nonlin-

ear approximation analysis. The corresponding average Hamiltonian of the system is following 

[70]:  
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Let the high-frequency mode of the triad be the axisymmetric oscillation at the frequency 

13 =ω . This high-frequency radial motion is supposed to be in phase with a pair of secondary 



 80 

flexural modes with the wave numbers n± , traveling at the same frequencies, 21 ωωω == , 

close to 2/3ω , accordingly to the phase matching conditions (5.10). In this case, the average 

Hamiltonian can be rewritten in more detail:  
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The truncated evolution equations within the first-order nonlinear approximation, generated by 

the average Hamiltonian (5.12), are the following  
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where ( ) ( ) ( )( )22222 1/11 ωεε −++−= nninp k
k . These coefficients are equal by absolute values, 

i.e., 21 ppp == , due to the symmetry of the problem. Note that the case under consideration 

is associated with the principal parametric resonance. After the exchange of variables:  
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Equations (5.13) can be rewritten as  
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One can see that the equations (5.15) are independent upon the angular velocity, Ω , of the base. 

These equations are similar to the well-known Euler kinematic equations describing the rotations 
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of a body about a single fixed point, which can be integrated exactly in terms of the Jacobi ellip-

tic functions [8]. These equations describe the so-called break-up instability over the high-

frequency mode of the triad with respect to small perturbations from the two low-frequency sat-

ellites [66].  

Now, let us exploit the axisymmetric mode in the ring as a “mediator” to pump the energy into 

the driven flexural modes in the presence of energy dissipation.  

Forced motion of the resonant triad  

Let the energy of dissipation be comparable with the work of the external force exciting the axi-

symmetric mode in the system (5.3):  

( ),cos2;2 ϖτηµµη QwQvQ wv −−=−= &&        (5.16)  

where η  is the damping rate16; Q  stands for the magnitude of the external harmonic force oscil-

lated at the given frequency ϖ , which is close to that of the axisymmetric mode, i.e., 

11 <<=− µδϖ , where δ  denotes a small detuning. In the absence of damping, the average 

Hamiltonian (5.12) is modified as it follows  
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This produces the evolution equations 

( )
( ) ( )

( )
( ) ( )

( ) ( ),exp2/exp

;exp
11

2

;exp
11

2

21
2

3
3

312

2

22
22

2
2

322

2

12
11

1
1

TiAAniTiiQA
dT

dA

TiAA
p

ni
A

p

pp
A

dT

dA

TiAA
p

ni
A

p

pp
A

dT

dA

ωεδη

ω
ω

εη

ω
ω

εη

∆−−+−=

∆
+

−
+

−Ω
+−=

∆
+

−
+

−Ω
+−=

    (5.18) 

                                                 

16 The damping coefficient can be different for each mode of oscillation. The corresponding 
modification of the model equations does not lead to a new qualitative result.  
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with allowances for an ad hoc extension related to the dissipative function R , entering the set 

(5.1). Analogously, after the exchange of variables (5.14), these evolution equations obtain the 

following form  
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After the exchange of variables, ( ) ( ) ( )( )TiTbTa jjj ϕexp= , this set (5.19) produces the following 

equations resolved in the real-valued amplitudes and phases:  
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  (5.20)  

where ( ) ( ) ( ) ( ) Tωτϕτϕτϕτψ ∆−−−= 123  is the generalized phase. It should be noted that these 

equations can be interpreted as a phenomenological generalization of the evolution equations 

(5.15) or a structural scheme of the object under the study.  

The stationary solutions to Eq. (5.19) consist of two subsets:  
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and  
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where ( )( )2222 14/ ωηε pQnK +=  is the control parameter analogous to the Reynolds number in 

the hydrodynamics [71, 72]. The first stationary set (5.21) is stable in the range *0 KK ≤≤ , 

where 1* =K  denotes the critical value of the bifurcation number. This stationary solution is to-

tally defined by linear properties of the dynamical system (5.3). In turn, at the point *K , this 

trivial stationary solution bifurcates, because of loss of stability, and is changed by the new sta-

tionary state (5.22), which is stable one as 1>K 17. As the control parameter K  is increasing 

further, the external source pumps the energy into the low-frequency flexural modes across the 

high-frequency axisymmetric mode (Fig. 5.5). This makes an effective nonlinear mechanism of 

energy transfer. The intensity of the low-frequency flexural modes increases with the number K , 

while the amplitude of the high-frequency axisymmetric mode 3b  is saturated at the constant 

level ( ) 22
3 /1 npb εηω += . It is not difficult to verify that the system (5.19) has no any bifurca-

tion, if any low-frequency mode is subject to the direct resonant excitation.  

When passing to the old variables of the problem, the corresponding solution obtains the follow-

ing form  
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   (5.23)  

where ( ) ( )∫ Ω
+

=
τ

ςςτψ
021

4
d

p

p
 is the precession rate.  

                                                 

17 The system under consideration though being stable nonetheless is not Gurwitzian one, since 
the phase of the precessing flexural mode is an arbitrary value. For instance, the following set of 
phases: 2/2/2/1 TT ωδπϕ ∆++−= , 2/2/2/1 TT ωδπϕ ∆++−= , Tδπϕ +−= 2/1  is appro-
priate as a solution. Though, the equality 2/πψ =  should be always fixed.  
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Fig. 5.5  Mode 7=n . The bifurcation diagram (η =0.1, ε =0.01, κ =0.45)  

Typical frames of the wave precession, accordingly to these expressions, are shown in Fig. 5.6. 

Here, the stiffness κ  is tuned into the triple-wave resonance over the seventh flexural mode.  

Two resonant triads are in phase  

Let us suppose that the stiffness .increases. This means that at least one more triad can be in-

volved into the nonlinear resonant coupling. In this case, the substitution to Eq. (5.3) has the fol-

lowing form  

( ) ( ) ( ) ( ) ( ) ( )
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      (5.24)  

where ( ) ( )5,1=kTAk  are the slowly varying complex amplitudes (the amplitude subset 

{ }321 ,, AAA  composes the first triad, while { }543 ,, AAA  enters the second one); the wave num-

bers 1n and 2n  refer to the first and the second triad, correspondingly; τωϕφ 111 += n , 

τωϕφ 112 +−= n , τωφ 33 = , τωϕφ 224 += n , τωϕφ 225 +−= n  are the fast rotating phases.  

Let the set of frequencies { }321 ,, ωωω  and the wave numbers 1n±  satisfy both the dispersion re-

lation (5.7) and the following phase matching conditions 

1213 ωµωωω ∆++= ,          (5.25) 
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where 1ω∆  denotes a small phase matching detuning. Almost the same conditions are valid for 

the second set of frequencies { }543 ,, ωωω :  

2543 ωµωωω ∆++= .          (5.26)  

Figure 5.7 displays graphically the phase matching conditions when the system parameters are 

specially tuned into the double triple-wave resonance over the modes number two and seven.  

 

Fig. 5.6  The wave precession. Modal number 7=n . Solid lines refer to flexural mode, while 
the dashes to the circumferential one (η =0.1, µ =ε =0.01043764232, κ =0.45, Ω =0.085, 
Q=0.1). The dotted radius indicates the rotation angle τΩ . 
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In this case, the corresponding average Hamiltonian (5.17) may be modified as it follows 
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This one produces the evolution equations, analogous to the set (5.18):  
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  (5.27)  

 

Fig. 5.7  Low-frequency dispersion branch. Triple-wave phase matching. The modes numbers 
71 =n  and 22 =n  are in phase with the axisymmetric radial oscillation (η =0.1, ε =0.0098, 

κ =1.25)  

The stationary solutions to Eq. (5.19) consist of three subsets:  
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where ( )( )31
22

1
2
11 12/ ωωηε pQnK +=  and ( )( )43

22
2

2
22 12/ ωωηε pQnK +=  are the control parame-

ters corresponding to the first and second triads, respectively. The first stationary set (5.28) is 

stable in the range *
110 KK ≤≤ , where 1*

1 =K  denotes the critical value of the bifurcation num-

ber. This stationary solution is also defined by linear properties of the dynamical system (5.3), as 

in the case discussed above. Near the point *
1K  the set (5.28), as it is expected, loses stability and 

is changed by the new stationary state (5.29), which would be stable one at 11 >K . At the same 

time, together with the parameter 1K , the control parameter 2K  increases up to its critical value 
*
2K , though the system has no any reaction. This means that the stationary set (5.30) is unstable 

one, because the critical value *2K  is reached at much more large magnitude of the external force 

Q  in comparison with that of the value *1K  (Fig. 5.8). The first triad (the precessing wave num-

ber 71 =n ) would always dominate under the second triad (the wave number 22 =n ). There-

fore, the typical frames of the wave precession would be similar to those illustrated in Fig. 5.6. 

So that one may conclude that the stiffness κ  can be effectively used to tune the gyro in the tri-

ple-wave resonance.  

 

Fig. 5.8  The critical force magnitudes *Q  versus the wave number n  (η =0.1, ε =0.0098, 
κ =1.25)  
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Resume 

Long ago, in 1851, Foucault demonstrated that a pendulum could be used as a vibratory gyro. 

The wave precession phenomenon caused by rotation of thin-walled cylinders and bells was first 

discovered and analytically described by Bryan [55]. This physical effect has inspired, in the 

1960s, development of a thin-walled hemispherical solid-state gyro. The fused-quartz hemi-

spherical resonator of the wave gyro is naturally actuated and sensed using modern MEMS-

technologies, following a concept of the rate integrating sensor [54]. Gyro units based on resona-

tors with high Q-factors have achieved a significant performance in the competition with their 

laser analogs. Today, the related technologies are evoked within a lot of commercial projects 

through the development of micromachined gyros.  

One more type of wave excitation in a wave solid-state gyro has been proposed in this study, 

when tracing the breakup instability of the high-frequency mode entering the triple-wave reso-

nant ensemble. This case combines simultaneously both the advantages of the positional and the 

parametric types of wave excitation. It was shown that the equations governing the evolution of 

the amplitude envelopes in the resonant triad, written in a special nonstationary frame of refer-

ence, do not depend implicitly upon the angular velocity of the ring. The breakup instability of 

the high-frequency axisymmetric mode in the resonant triplet gives arise to slowly precessing 

flexural waves in the presence of energy dissipation. A characteristic number as a dimensionless 

combination of system parameters, including the magnitude of the periodic external force, damp-

ing coefficient, and the nonlinearity, are revealed. This number controls the bifurcation of oscil-

latory patterns, when the system passes through a certain critical value, analogously to the Rey-

nolds number in the hydrodynamics. Tracing the patterns of the precessing flexural modes, one 

can be judges on the angular position of the rotating ring in the absolute space. Note that the 

nonlinear model of the gyro described in this study requires no any extremely high Q-factor of 

the resonator, or some feedback control, as well. This model assumes that the gyro can be tuned 

in the given precessing regime by controlling the stiffness between the ring resonator and the ro-

tating platform.  
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SELF-EXITED RESONANT BOLOMETER  

Recent cosmology experiments have revealed an accelerated expansion of the Universe and ani-

sotropies in the Cosmic Microwave Background radiation. There are known several cosmology 

instruments such as balloon telescope BOOMERanG, OLIMPO, B-POL etc., for detecting relict 

Big Bang waves. The experimental observations inspire novel challenges in theoretical scenarios 

based on accurate measurements using modern ultra-sensitive detectors. The resonant bolometer, 

proposed as a mathematical model in the present paper, seems to be one of such promising tools. 

Moreover, analogous superconducting devices exhibit some promising routes to quantum com-

putations in the recent years.  

We study a model of the resonant bolometer converting the electromagnetic radiation energy into 

thermal one with the help of a heat sensor integrated into a high-quality resonant circuit. Self-

excited oscillations in the resonant circuit are supported by a low-noise periodic generator based 

on physical properties of a Josephson junction. A heat sensor, implemented into the resonant cir-

cuit, passes from the superconducting state to the resistive phase under the incoming pulse. The 

operating temperature of all the sensitive parts of the bolometer is set slightly below the super-

conducting edge. The measurement procedure is to trace the amplitude and phase modulation at 

the absorption of the incoming infrared radiation. The sensitivity of this sensor at conventional 

material parameters would be evaluated as ][10-12 W  by the power input.  

The main objective of this chapter is to provide one more idea for the accurate identification of a 

weak infrared radiation. From a viewpoint of the theory oscillations, the self-exited resonant 

bolometer can be treated as a self-exited oscillatory system possessing more than two degrees of 

freedom. In spite of some complexity in a theoretical description, the numerical modeling leads 

to a conclusion that this system is extremely simple, since any chaotic motion, inherent in com-

plex nonlinear dynamical systems, has not been observed yet. Point out that this is a fairly rare 

case in the theory of oscillations. It means that, on the one hand, we have got a simple self-exited 

system characterized by regular dynamics, while, on the other hand, the model of the self-excited 

resonant bolometer possesses a negative feedback which creates most optimal preconditions for 

a quickest cooling of the sensor. This would lead to a technical result which improves the sensi-

tivity, accuracy and stability by reducing the measurement errors up to the level limited by ther-

mal fluctuations. The latter circumstance creates perspectives for more efficient identification of 

unknown parameters in the incoming electromagnetic radiation.  
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Voltage-temperature circuits 

We should note that any conventional bolometer almost always operates using a DC biasing. 

This represents almost linear systems investigated by tools of spectral methods. Therefore, there 

is no place to apply the modern theory of nonlinear oscillations. Probably this is caused, on the 

one hand, by an attractive simplicity of sensors, while, on the other hand, – by advances in 

nanotechnology, trying to modify the existing models up to ideal limits predicted by the noise 

theory. The recent actual studies [73–77] deal with the periodically forced models of sensors, 

based on approaches inherent in nonlinear resonant systems. Point out that the periodical pump-

ing is modeled therein just as trigonometric functions. Although, we should remember that this is 

power source of additional noise in practice, inherent in any conventional generator of periodical 

electric signals. Here, we try to overcome this deficiency by combining the DC biasing with the 

periodical pumping due to the self excitation mechanism. Finally, recent developments in the 

nanotechnology allow supposing that the dynamical sensors would really take place of tradi-

tional sensors.  

First, we consider the dynamics of a conventional bolometer represented by an electrically bi-

ased Thévenin’s circuit. This circuit, connected in series, consists of a bias voltage bU , an ordi-

nary resistor r , an inductance L  and a transition-edge-sensor (TES). Changes in temperature 

result in changes of the current flowing through the TES-sensor, playing the role of the ther-

mometer whose resistance depends upon the temperature T . At low temperatures, the electrical 

resistance ( )Tρ  is zero. Near the critical temperature 0T , the resistance increases together with 

the temperature. At ambient temperatures, the TES-sensor has a normal resistance 0ρ . The in-

ductance L  includes, together with a parasitic one, the inductance of a SQUID interferometer. 

The electrical capacitance c  is neglected in this model.  

Let the circuit be biased by nearly constant voltage, at least, at the frequencies lower than the 

characteristic reciprocal time ( ) Lr /ρ+ . This also assumes that the resistance r  is small enough 

compared to the resistance 0ρ , otherwise the current biasing would be suitable instead the volt-

age bias bU . Therefore, this circuit is described by the following equation:  

( )( ),TrjU
dt

dj
L b ρ+−=           (6.1) 

where ( )tjj =  is the current; t  denotes the time. It is supposed that the TES-sensor is integrated 

with the absorber. The absorber cools into a thermostat having the temperature TT ∆−0 , where 
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T∆  is a small temperature detuning, slightly under the sensor phase-transition edge character-

ized by the value 0T . The Joule heat elevates the temperature of both the TES-sensor and ab-

sorber, some above the bath temperature, and dissipates the energy of the conductivity electrons. 

There is always a finite voltage drop in the direction of the current flow because of the electrical 

resistance. The useful heating is inspired by the incoming power, described here as a narrow ex-

ternal pulse ( )tP , and approximated as the Dirac-type function having a small dispersion in the 

time scale. Thus, the governing equation of the thermal circuit is the following  

( ) ( ) ( )tPTTTQjTRTC +∆+−−= 0
2& ,        (6.2) 

where VC γ=  is the heat capacity (γ  stands for the volumetric heat capacity; V  is the volume 

of the absorber); Q  denotes the thermal conductivity characterizing a cooling rate into the ther-

mostat.  

Conductivity electrons are scattered in a random fashion by imperfections in material, and take 

part in the energy exchange between thermal phonons. Thus, the energy is converted into heat, 

accordingly the second law of thermodynamics. At ambient temperatures, the resistance is 

caused by inelastic collisions between electrons and thermal phonons, while the thermal phonons 

are almost absent at lower temperatures. As the temperature is decreased, the resistance also de-

creases, and the resistance takes place due to the scattering on impurities, in general. Conse-

quently, the clearance of materials is worth for the bolometer sensitivity. The bolometer effi-

ciency depends also upon the volume, not only upon the quality of a material of the absorber. 

Naturally, the geometry of the absorber should provide best energy resolution. On the one hand, 

the absorber design should tend to decrease the heat capacity, while on the other hand, the in-

creasing heat conductivity facilitate a cooling of the absorber together with decreasing the re-

laxation time.  

The electrical resistance at ambient temperatures is caused by the electron-phonon coupling. The 

electrons are subject to many random collisions with thermal phonons. As a result, the random 

exchange of energy between the electric current and the thermal reservoir is experienced. In the 

absence of the net current, the electron gas has the same temperature as the gas of thermal pho-

nons. Consequently, the fluctuations are zero in average, because the system is in the equilib-

rium. These fluctuations appear as electric noise in conductors. There is a fundamental relation-

ship between the mean-square noise voltage and the electrical resistance at the given tempera-

ture:  
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fTRkU B ∆= 4
2

,  

where [ ]KskgmkB
2223 /1038059.1 −×=  is the Boltzmann constant; T  is the temperature of the 

resistor R ; f∆  denotes the frequency bandwidth. The mean noise voltage U  is zero. This noise, 

called as the Johnson noise [78, 79], represents an ordinary “white noise”. Its intensity directly 

depends upon the temperature. Naturally, the real noise would be somewhat larger than the fun-

damental Johnson noise because of variety of physical effects, such as a tunneling of electrons or 

random magnet flux in a superconductor, etc.  

Example 

Let us consider the set of equations just discussed above:  

( )( ) ( ) ( ) ( ).; 0
2 tPTTTQjT

dt

dT
VjrTU

dt

dj
L b +∆+−−=+−= ργρ     (6.3) 

Here ( ) ( )( ) 1/4
0

0e1
−∆−−+= TTT ρρ  is the TES-sensor resistance, characterized by is the resistance at 

the normal state 0ρ ; ∆  characterizes the rate of the phase transition between the normal and su-

perconductive states; ( ) ( )( )DttPtP /sech 00 −=  is the incoming power. Let us suppose that 

[ ]K5.0=∆ ; [ ]sD 5.0= ; [ ]st 250 =  (Fig. 6.1). The other system parameters are the following: 

[K] 3.5 0 =T ; [K] 0.3=∆T ; [ ]KWQ /10 7−= ; [H] 0.5 =L ; ]/[105 32 KmsW−×=γ ; ][ 10 1 Ω= −r ; 

][0.10 Ω=ρ ; ][10 35 mV −= .  

The initial conditions to the correspondent Cauchy problem (6.3) are defined from the equilib-

rium:  

( )( )( ) ( )( ) ( ) .0e1;0e1 0
21/4

0

1/4
0

00 =∆+−−+=++−
−∆−−−∆−− TTTQjjrU TTTT

b ρρ  

Let the voltage be a given constant [ ]VUb
8100.1 −×=  at the initial temperature ( ) [ ]KT 2.30 ≈ , 

then the stationary current should be equal to ( ) [ ]Aj 8100.60 −×= .  

After the transform: ( ) ;/ τρLt = ( ) ( ) ( );/ τρ JUtj b= ( ) ( ) ( )τΘ∆−= TTtT 0 , the set (6.3) can be 

expressed in terms of new dimensionless coordinates:  
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where ( ) ( )






 −= Lt
D

L
PP /sech 00 ρτ

ρ
τ

)
 and ( ) ( ) ( )( )( ) 1/4 00e1

−∆+Θ∆−−+=Θ TTT τρρ) .  

Let us consider a perturbed version of Eq. (6.1) in the resistive state:  

( ) ,)exp(∫
∞

∞−

+++−= ωϕωρ ωω dtiUrjU
dt

dj
L b   

where ωU  is a contribution of the voltage noise at the given frequency ω ; ωϕ  are arbitrary 

phases.  

a b 
Fig. 6.1  The resistance the TES sensor vs. the temperature (a) and the incoming power vs. the 
time (b)  

Therefore, a spectral component of the current noise is expressed as ( )LirUj ωρωω ++= / . To 

define the output noise, one must integrate this function over the total frequency range. The 

mean square of the total random current reads  
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Here ( ) Lrf 2/ρ+=∆  is the noise bandwidth, expressed in Hertz. This means that the total volt-

age mean square ( ) frRTkU B ∆+= 4
2

 is evaluated as [ ]VU 112
109.1 −×≈ , in our above 

numerical example. Thus, the corresponding noise bandwidth would be about [ ]Hz5 .  

Moreover, the temperature fluctuations γθ VTkB /22 =  take place in any small body possess-

ing the thermal capacity γVC =  at the temperature T . This fundamental contribution always 

limits a best obtainable resolution by noise caused by intrinsic thermal fluctuations. This one is 

estimated as almost negligible value [ ]K82
108.1 −×=θ , in our numerical example. Thus, the 

set of the modified equations (6.3) reads as it follows  

( )( ) ( ) ( ) ( ) ( )( ) ,/; 0
2

1 γρξρ VtPTTQiT
dt

Td
tirTU

dt

di
L b +−−=++−=

))
)

)
 

where ( ) ( ) ( ) ( )( ) frTtTktt B ∆+=
))

ρηξ 411  and ( ) ( ) ( ) γηξ VtTktt B /2
22

)
=  are independent random 

functions. The perturbed temperature T
)

 is resulted after the transform ( ) ( ) ( )ttTtT 2ξ+→
)

. The 

mean values of the functions ( )t1ξ  and ( )t2ξ  are zeroes and possess the Dirac function correla-

tions. The result of the numerical experiment, shown in Fig. 6.2, explains roughly the basic noise 

effect on the sensitivity of the bolometer (the magnitude of the incoming power 0P  is scanned 

from [ ]W1110−  to [ ]W910− ).  

a b 
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c d 
Fig. 6.2  The current and temperature across the TES-sensor vs. the dimensionless time. The 
regular component of the response, depicted by point lines, becomes almost undistinguished at 
the current noise background together with decreasing the incoming power signal – (a, b, c). The 
temperature change by scanning the incoming power – (d)  

Van der Pol generator with a TES-sensor  

Van der Pol generator represents a classic model in the theory of nonlinear oscillations, in phys-

ics, electronics, biology, neurology, sociology, etc. The governing equation has been studied 

over wide parameter regimes, beginning from quasi-harmonic patterns to relaxation oscillations. 

Van der Pol generator is a simplest self-exited system that may be modified to investigate much 

more complicated nonlinear systems.  

Let the electrical circuit of a bolometer is consistent with the van der Pol generator, though the 

TES sensor is used there instead of the normal resistor. Then the governing equations can be 

written as it follows  

( )

( ) ( ) ( ),

;;/

0
2

2

tPTTTQtj
dt

dT
V

j
dt

dq
qjcq

dt

dj
L

+∆+−−=

=−−=++

ργ

δερ
       (6.5) 

Thus, the electric circuit consists of a resistor ( ) ( )( ) 1/4
0

0e1
−∆−−+= TTT ρρ  possessing superconduc-

tive properties at low temperatures beneath the value 0T ; an inductance L ; a capacitor c ; all 

connected in series. The parameters ε  and δ , inherent in any van-der-Pol generator, are respec-

tive for a self-excited biasing. The equation describing the heat circuit is the same as described in 

the previous sections.  
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The dynamical variables of the system are the temperature of the TES-sensor ( )tT ; the current 

flowing through this one ( )tj , evolved in the time t . The TES-sensor plays as the thermometer. 

Changes in the temperature result in the evolution of the amplitude envelope of the current, un-

der the incoming power ( ) ( )( )DttPtP /sech 00 −= . The inductance L  is supposed to include that 

of a SQUID coil, for measurements.  

After the transfer from the actual variables to the polar coordinates: ( ) ( ) ( )( )tttAtq ϕω += sin ; 

( ) ( ) ( )( )tttAtj ϕωω += cos , and the averaging over the fast rotating phases, Eq. (6.5) are rear-

ranged into the following form  

( )[ ]

( ) ( )[ ] ,/

;0;8/4

0
22

2

VtPTTTQAT

LAAA

γρω

ϕεεδρ

+∆+−−=

=+−−=

&

&&

 

where cL/1=ω  is the frequency of the electric circuit in the absence of resistance and excita-

tion.  

Let us suppose that that the normal resistance is large enough, i.e., εδρ >0 . If the initial value of 

the amplitude is equal to 0 or δ2 , then the amplitude ( )τA  remains the same for all the time in 

the absolute absence of perturbations. However, it is well known that the stationary solution 

( ) 0=τA  exhibits unstable properties at 0~ρ  (the superconductive state), while the same trivial 

state becomes stable one at the normal resistance 0~ ρρ .  

At the superconducting state, the stationary amplitude of oscillations is saturated, i.e., 

( ) δ2=tA . At the time 0tt = , the resistorρ , under the incoming power ( )tP , passes from the 

superconducting state, 0~ρ , to the resistive phase, 0~ ρρ . Let us suppose that the phase transi-

tion between the superconducting and the resistive states of the system is performed beginning 

from the point 0tt = . Then the amplitude would relax beginning from the value δ2 , and al-

most to zero, following the time history  

( ) ( )( )( )
( )( )( )εδτεδρρ

δτεδρεδρ
τ

000

000

exp

2/exp2

t

t
a

−−−−
−−−−

= .  

Some definite time t∆  is necessary to heat and then to cool the absorber up to the superconduc-

tive temperature. After the absorption of the incoming power, the resistor ρ  returns from the 

resistive state to the initial stable stationary superconducting state, and the amplitude evolves ac-

cordingly to the following law  
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( ) ( )( ) ( )
( )( )( ) ( ) δτεδ

δτεδ
41exp

2/exp2

0
2

0

00

+−−∆+
−∆+=

tatt

tatt
tb .  

The locus between the curves ( )τa  and ( )τb , defined by the equation ( ) =τa ( )τb , at some point 

1tt = , defines an approximate solution to the problem in the form of the following piecewise 

function, ( ) ( ) ( ){ }11 ,;, tbtaA ≥<= τττττ , shown in Fig. 6.3. Here, the system parameters are 

selected in arbitrary units: 5.30 =T , 1.0=∆T , 2
0 10−=P , 05.0=∆ , 5.0=D , 05.0=γ , 1=V , 

035.0=Q , 1=L , 8.0=ρ , 1=ω , 01.0=δ , 035.0=ε .  

One can conclude that the stable stationary solution is zero at the resistive state, i.e., 0=A , 

while the stationary amplitude would be equal to δ2=A  at the superconducting state. The 

time interval, defining the transition between these two states in the system, is governed by the 

following heat balance equation  

( )
( ) ( )[ ] ( )

( )
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This is a linear nonautonomous equation which can be easily integrated (Fig. 6.4).  

 

Fig. 6.3  Amplitude envelope vs. time in a comparison between the exact (solid line) and ap-
proximate solutions (dotted and dash lines)  
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Fig. 6.4  Temperature vs. time  

Figures 6.3 and 6.4 explain that the single undefined parameter of the problem is the time inter-

val of absorption 01 ttt −=∆ . This one can be defined experimentally using above formulae by 

solving the inverse problem.  

Example 

Let the realistic system parameters be the following: [ ]KT 30 = , [ ]KT 1.0=∆ , [ ]WP 10
0 10−= , 

K05.0=∆ , [ ]sD 35.0= , [ ]3/5.0 KmsW=γ , [ ]31110 mV −= , [ ]KWQ /10 11−= , 

[ ]HL 10105,2 −×= , [ ]Ω= −1110ρ , [ ]Fc 101095.0 ×= , [ ]29.0 C=δ , [ ]210 /1035.0 CΩ×= −ε .  

After the transform τcLt = ; ( ) ( ) ( )τΘ∆−= TTtT 0 ; ( ) ( )τδ xtq = ; ( ) ( ) cLyti /τδ= , Eq. 

(6.5) can be rewritten as  

( ) ( )
( )

( )
( ) ( )

( ) ,
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where  ( ) ( )( ) ( )( )DtcLPDtcLPP /sech2/sech 2010 −+−= τττ
)

 ( [ ]st 181 =  and [ ]st 571 = ); 

( ) ( ) ( )( )( ) 1/4 00e1
−∆+Θ∆−−+=Θ TTT τρρ)  (Fig. 6.5).  
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a b 

Fig. 6.5  The resistance of the sensor vs. the temperature (a); the incoming power vs. the time (b)  

 

a b

c 

Fig. 6.6  The time history: (a) – charge; (b) – current; (c) – temperature  
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Fig. 6.7  Perturbed limit cycle  

In our numerical example, results of the numerical experiment are shown in Fig. 6.6 and Fig. 6.7. 

The root of voltage mean square is evaluated as [ ]VU 162
106.1 −×≈ , while that of the tem-

perature fluctuations is about [ ]K52
108.2 −×≈θ .  

The heart of any Van der Pol generator is a semiconductor. Any traditional semiconductor pro-

duces large noise at ambient temperatures, and plays as an isolator near the absolute zero. There-

fore, we should look for other self-excitation mechanisms to achieve a required accuracy in the 

weak incoming power detection.  

Josephson-type generator loaded in parallel to the resonant RLC-circuit 

Consider a Josephson junction biased by a constant DC current i . Let us neglect the heat effects, 

then the equations of the Josephson generation holds true [80–82]:  

.
2

;sin
h

ev

dt

d
iJ

v

dt

dv
С ==++ ϕϕ

ρ
        (6.6) 

Here ( )tv  is the voltage across the contact; ( )tϕ  is the Josephson phase; J  denotes the critical 

current; e stands for the absolute value of the electron charge; h  is the Planck's constant; C  and 

ρ  are the capacitance and junction resistance, respectively. There is no generation of oscillations 

provided that the current flow through the Josephson junction is less than its critical value, i.e., 

Ji <  [83, 84]. In this case, the stationary value of the Josephson transition phase 0ϕ  is deter-

mined from the following simple equation iJ =0sinϕ . The generation occurs when the current 

exceeds the critical value, i.e., Ji ≥ .  
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Let a high-quality RLC-circuit be connected in parallel to the Josephson junction. The system 

also operates by applying a DC bias (Fig. 6.8). The symbol JJ  denotes the Josephson junction in 

this figure. The equations of Josephson oscillations are modified as it follows:  

( ) ( )[ ]
( ) ( )[ ]

.;

;

;

;
2

;sin

0

0
2

j
dt

dq
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dt
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nn
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==++
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∆−−Σ−=Γ

=−=++
h

ϕϕ
ρ

        (6.7) 

Here TESV  is the volume of the absorber integrated with the heat-sensitive element; 

( )TTESTES Γ=Γ  is the specific heat capacity of the absorber; TESΣ  stands for the coefficient of 

thermal conductivity; 5=n 18; ( )tT  is the temperature of the heat-sensitive element; TT ∆−0  

denotes the constant temperature of the coolant tank; T∆  is the temperature set some below the 

phase transition edge. The parameters of the superconducting junction are the following: JJV  is 

the volume of the junction; ( )ΘΓ=Γ JJJJ  stands for the specific heat capacity of the junction; 

JJΣ  is the coefficient of thermal conductivity; ( )tΘ  is the junction temperature, while ( )tq  and 

( )tj , respectively, are the charge and current flow through the resonant circuit with typical pa-

rameters of an inductance l , a capacitance c , and a resistance r . All the remaining symbols are 

the same as above.  

The critical current of the junction in the vicinity of the critical temperature is defined by the 

formulae [85, 86]:  










Θ
∆∆=
Bke

J tanh
2 ρ
π

; 
JJs

JJcB
T

Tk
,

, 152.3
Θ−=∆ .  

                                                 

18 Point out that the electron-phonon coupling has been measured experimentally in many mate-
rials. The coupling power is approximated by the following phenomenological dependence 

( ).0
nn

he TTVP −Σ=−  Here n  is integer number, about four or five; [ ]35910~ mWK−Σ  is the con-

stant; T  is the temperature of the electron gas; 0T   is the temperature of the phonon gas in the 

thermostat, and V  stands for the volume in which the electron-phonon coupling occurs. Thus, 
the electron-phonon coupling determines the coupling between the bolometer and the cold bath.  
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Here ∆  is the energy gap of the superconductor as the function of the temperature ( )tΘ ; JJsT ,  is 

the value of the critical temperature; Bk  denotes the Boltzmann constant. To obtain the depend-

ence of the critical current J  upon the temperature ( )tΘ , one should solve a somewhat difficult 

integral equation [84]. However, the behavior of this solution is very simple (Fig. 6.9); we know; 

if 0=Θ , then 52.3/2 , ≈∆ JJsBTk , else if JJsT ,≥Θ , then 0=∆  ( i.e., the junction resistance is 

converted into a standard constant value ρ  at the ambient temperatures).  

l

c

JJ
DC r

 
Fig. 6.8  Josephson generator connected in parallel to the RLC-circuit  

  

Fig. 6.9  The energy gap versus temperature (arbitrary units)  

Typical temperature patterns of the resistance ( )TRr =  and the heat capacity ( )TTESΓ  of the ab-

sorber are schematically plotted in Fig. 6.10, in arbitrary units.  
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a b 

Fig. 6.10  Typical temperature dependences (a – resistive element; b – heat capacity)  

The temperature dependence of the specific heat may be approximated by the formula [80]:  

( ) ( )




>ΘΘ
≤ΘΘ−

=ΘΓ
.,

;,/76.1exp

,

,,,

JJcJJ

JJcJJcJJcJJ

JJ T

TTTy

γ
γ

      (6.8) 

The valuey  is determined from the following condition  

43.1
,

, =
−

JJcJJ

JJcJJes

T

Tc

γ
γ

.           (6.9) 

Here esc  is the heat coefficient in the vicinity of the superconducting edge, while JJγ  denotes the 

heat coefficient at ambient temperatures; JJcT ,  denotes the critical temperature. The formula de-

scribing the function ( )TTESΓ  is completely analogous to the above expressions (though TEScT ,  is 

used instead the temperature JJcT , , and so on, all the related indexes are changed, as well).  

Let us suppose that the bolometer runs in the idle regime. We neglect the temperature effects. An 

approximate analytical solution to Eq. (6.7) may be represented in the form  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
.

sin2
;cos

;sin;cos

2
2

11

h

βϕβρ

αρα
+Ω

+Ω=+ΩΩ+=

+Ω+=+ΩΩ=
tea

tttaitv

tacitqtatj
     (6.10) 

Here h/2 ρei=Ω  denotes the frequency of the Josephson generator in the absence of the resonant 

circuit. The phases and amplitudes are defined from the following set of equations (solutions 

these equations tends to be more accurate at iJ << ):  
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     (6.11) 

Let us assume that the generation frequency Ω  is close to the natural frequency of the resonant 

circuit lc/1=ω . The solutions to the set (6.11) demonstrate a typical behavior of dynamical 

systems near the resonance. Figure 6.11 displays a numerical example at the frequency 

][10254.0 11 Hz×=Ω , provided that the resistance, ][ 101.16 -3 Ω×=r , is small enough. The 

points in this figure correspond to the parameters 1a  and α . The dimensionless frequency detun-

ing is normalized to unity with respect to the resonant frequency Ω . The dimensionless ampli-

tude 1a  is normalized by the value ][101.295 -15 Cci ×=ρ , while the amplitude 2a  – by 

][103.291/ -16 Wbi ×=Ωρ . The parameters of the numerical estimation are the following: 

[A] 10 8.363 -5×=J ; ][10 1.549 -11 Fc ×= ; [A] 10 8.363 -5×=i ; ][ 101.16 -3 Ω×=r ; [m] 10 -12=l ; 

][107.872 -10 Ω×=ρ ; ][104.1 -11 FC ×= .  

a b 

Fig. 6.11  Phase and amplitude response (a – the parameters α  and β ; b – the parameters 1a  

and 2a )  

As one can see, the resonant excitation alters significantly the phase and amplitude dependences 

at small variations near the resonant point 1/ =Ωω , so that this model leads us to an idea of a 

highly sensitive sensor. 
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First, consider the time history of the process governed by Eq. (6.7) at the initial conditions  

( ) 00 =ϕ ; ( ) 00 =v ; ( ) 00 =j ; ( ) TTT ∆−= 00 ; ( ) TT ∆−=Θ 00 .  

The calculation uses the dimensionless variables:  

tωτ = ; ( ) ( ) itjG /=τ ; ( ) ( )tϕτ =Φ ; ( ) ( ) citqQ ρτ /= ; ( ) ( ) ωτ h/2 tevG = .  

Specific numerical parameters are shown in the Table 6.1. These are taken as typically encoun-

tered ones from the listed bibliography in an attempt to rely already achieved level in technolo-

gies.  

Table 6.1  The idle sensor parameters with the constant small resistance r   

[A] 10 8.363 -5×=J ; ][10 319 mVTES
−= ; 

[K] 0.27 ,0 == TESsTT ; [K] 0.351 , =JJsT  ][ 101.16 -3 Ω×=r ; 

[K] 0.03=∆T ;  ]/[105.2 359 mKWTES ×=Σ ; 

][10 1.549 -11 Fc ×= ; ]/[109.6 325 mKWsTES
−×=γ ; 

[A] 10 8.363 -5×=i ; ][10 315 mVJJ
−= ; 

[H] 10 -12=l ; ]/[105.2 359 mKWJJ ×=Σ ; 

][107.872 -10 Ω×=ρ ; ]/[109.6 323 mKWsJJ
−×=γ . 

][104.1 -11 FC ×= ;  

The oscillatory patterns are shown in Fig. 6.12. 

a b 
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c d 
Fig. 6.12  Dynamical response (a – voltage in the junction; b – temperature of the Josephson 
junction; c – charge in the RLC–circuit; d – current in the RLC–circuit).  

Sensor Model 

As we can trace, the dynamical system representing the terahertz generator integrated with the 

resonant RLC–circuit is extremely sensitive to changes in the resistance, since the circuit is tuned 

into the resonance with the generator. This property is used to identify small thermal changes. 

Figure 6.13 shows a scheme of the sensor with the TES–type resistor included in the oscillatory 

circuit parallel to the generator. The magnetic flux near the inductive element may be measured 

with the help of a quantum interferometer.  

l

c

JJ
DC

TES

 
Fig. 6.13  Self-excited resonant bolometer  

The following set is derived by modifying Eq. (6.7), making allowances for the resistance of 

TES–type:  
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     (6.12) 

Here ( )tP  is the external power; t∆  is the characteristic pulse duration over the time. The re-

maining notations are the same. In contrast to model (6.7), the set (6.12) cannot be subject to ef-

fective analytical study. In this case one may rely to numerical calculation only. In order to test 

the dynamics governed by the model (6.12), we use the system parameters from Table 6.2. The 

additional parameters are the following: ][ 11.6 Ω=r ; ( ) ][10max 12 WP −= ; 50=
R

T

dT

dR
; 

][10 12 st −=∆ .  

The results are presented in Fig. 6.14 (the same dimensionless variables). Obviously, the effects 

of absorption of the external pulse can be clearly observed due to dynamical changes in the am-

plitude and phase. In particular, as we can observe, the time point correspondent to the pulse ab-

sorption is characterized by almost zeros in the current and voltage. This means that the model of 

the self-excited resonant bolometer possesses by the effective feedback which creates most op-

timal preconditions for a quickest sensor cooling.  

a b 
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c d

e f 

Fig. 6.14  Bolometer dynamics (a – Josephson phase; b – temperature of the resistive element 
over the time; c – temperature of the junction; d – voltage; e – charge; f – current). The pulse 
comes at the time of 200 dimensionless units  

This would lead to a technical result which should improve the sensitivity, accuracy and stability 

of the sensor by reducing the measurement errors up to the level restricted by thermal fluctua-

tions.  

Finally, the physical processes in the self-excited resonant bolometer may be consumed by the 

following elementary acts. The low-noise high-frequency generator of oscillations is represented 

by a terahertz Josephson junction, which is loaded by the resonant RLC-circuit in parallel. The 

inductive element of the circuit allows for an accurate readout from the sensor with the help of a 

quantum interferometer. The frequency of electric oscillations is generated in the circuit at the 

same frequency as that of emitted electromagnetic waves in the case of the critical biasing. Let 
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the resonant circuit be tuned into the resonance with the Josephson generator, and then the 

maximal loading is provided. This resonance is accompanied by decreasing in the amplitude of 

oscillations in the generator, while the amplitude increases in the circuit at the same time. The 

resonance creates stationary self-excited oscillatory regimes, which exhibit stable patterns at 

terahertz frequencies. If the sensor is out of balance, because of the absorption of the external 

pulse, then the negative feedback reacts extremely quickly to return the sensor to its original un-

perturbed state (Fig. 6.14).  

 

Fig. 6.15  Bolometer dynamics in the phase-space cross section  

Noise-equivalent power 

If the temperature of the physical body is above the absolute zero, then thermal fluctuations ap-

pear always [87, 88]. The main objective is that these fluctuations have to be small compared to 

the useful signal. The noise-equivalent power due to the electron scattering on phonons is esti-

mated by the following formulae:  

( )tTVkNEP TESTESBTES
620 Σ= ; ( )tVkNEP JJJJBJJ

620 ΘΣ= .      (6.13) 

The estimations of noise generated by the electron scattering reads:  

( )tTrkNEV Br 4= ; ( )tkNEV BΘ= ρρ 4 .        (6.14) 

The evaluation of noise due to the dynamical recharge of capacitors is the following:  
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( ) ctTkNV Bc /= ; ( ) CtkNV BC /Θ= .         (6.15) 

Thus, the noise evaluation for the example present above would be roughly: 

]/[102.425 2-32 HzWNEPTES ×= ; ]/[109.933 2-31 HzWNEPJJ ×= ; ]/[105.381 2-22 HzVNEVr ×= ; 

]/[101.855 2-23 HzVNEV ×=ρ ; ][107.486 2-13 VNVc ×= ; ][103.313 2-13 VNVC ×= .  

Let us consider the dimensionless transient process in the bolometer, related to the time history 

shown in the previous figures. This the time range is about 100 units, i.e., the physical time in-

terval is about ][102.473 -9 s×  (Fig 6.6). Thus, the frequency bandwidth, ω∆ , can be estimated 

as ][104.044 8 Hz× . Alternatively, the noise generated due to the recharge of capacitors is not a 

new kind of noise, since cr NVNEV ~ω∆  and CNVNEV ~ωρ ∆ , accordingly to the spectral the-

ory. Therefore, the total noise should be about ][10-12 W  in the power. Since the critical noise has 

the same order as the power of the external pulse, P ,  related to the numerical example, we have 

evaluated a threshold of sensitivity of the bolometer to infrared signals. Finally, the interested 

reader can trace in detail all the numerical examples used in this study [89]. 

Resume 

The reliability of the mathematical model describing dynamical regimes in the self-exited reso-

nant bolometer may be confirmed by many resent successes in nanotechnologies, referred in the 

text and references in a part. In particular, the patent US8063369 uses several interconnected in a 

cascade TES-type sensors providing a very sharp response of the bolometer. The main difference 

of this prototype from the self-excited resonant bolometer is that a constant bias voltage is used 

to power the cell of detectors. Note that the constant bias, either the current or voltage, would 

naturally limit the effectiveness of the feedback which should promote a rapid cooling of the de-

tector up to the operating point. Unlike this, the self-exited resonant bolometer has a variable bi-

asing, both in the current and voltage. This supports some fruitful conditions for the feedback 

properties to reduce the time constant of the bolometer.  

Consider the effectiveness of resonant circuits in the excising design of bolometers. A sensitive 

element in the resonant circuit may play the role as a capacitor or inductor. An example can be 

found in the patent US6534767. It is well known that the capacitance or inductance both depend 

on the ambient temperature, which affects changes in the impedance. This causes variations of 

the resonant frequency which may be registered through the phase-locked loops. The main defi-

ciency of such a prototype is that it is designed using ferroelastic materials, which able to exhibit 
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the desirable qualities at relatively high temperatures only and cannot provide accurate meas-

urements, because of thermal noise.  

A low-noise high-frequency generator of oscillations in the resonant bolometer can be repre-

sented by a terahertz Josephson junction, as the best candidate, which is loaded by the resonant 

RLC-circuit in parallel [90]. The junction, at the critical biasing, generates a localized electro-

magnetic radiation. The frequency of electric oscillations in the circuit occurs at the same fre-

quency as the frequency of the emitted electromagnetic waves. Then the resonant circuit is tuned 

into the resonance with the Josephson generator to provide its maximal loading. The resonance 

creates the stationary self-excited oscillatory regimes, which are stable at terahertz frequencies. 

When the sensor is out of balance, because of the absorption of the external pulse, the negative 

feedback reacts extremely quickly to return the sensor to its original unperturbed state. The in-

ductive element of the circuit allows for an accurate readout from the sensor with the help of a 

quantum interferometer. In particular, the patent US8026487 describes a superconducting tun-

able coherent terahertz generator based on the resonant coupling between the Josephson oscilla-

tions and the fundamental mode of the cavity resonator, which leads to a powerful terahertz ra-

diation.  

Note that the self-excited resonant bolometer represents a mesoscopic device. Then its efficiency 

is restricted by the geometrical dimensions of the system. The mathematical description repre-

sented in the chapter is based on the semi-classical physical methods. Let the dimensions de-

crease with the increasing the purity of a sensor material, then the bolometer turns into a typical 

quantum system. It is possible that perspective sensor elements can be composed of monatomic 

metallic layers covered by graphene sheets. This would ensure a minimization of the heat capac-

ity, as well as graphene sheets, accordingly to the state-of-the-art, exhibit extremely high thermal 

properties which would support a maximization of the thermal conductivity. To implement such 

elements in the bolometer we may pay attention on new intercalation technologies [91]. NEMS 

terahertz resonators are also of higher interest [92]. The permanent evolution of nanotechnolo-

gies would provide the appearance of very rapid and efficient devices such as quanta counters. 

Such devices would manifest themselves as awfully quantum objects. However, their manufac-

turing, but not only the mathematical description, seems to be not so easy [93].  
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RESONANT ENSEMBLES OF STATIONARY QUASI-
HARMONIC WAVES IN A ONE-DIMENSIONAL ANHARMONIC 
CHAIN  

We study nonlinear resonant interactions between quasi-harmonic waves in a one-dimensional 

anharmonic chain, based on a simple mathematical model originated from the geometry of cen-

tral and noncentral interactions between particles, within the so-called harmonic approximation. 

The investigation is carried out by standard asymptotic methods of the nonlinear dynamics. Tri-

ple-wave resonant ensembles are revealed within the first-order approximation analysis. These 

triads are formed both due to the quadratic nonlinearity of the system, and due to satisfying the 

phase-matching conditions. The resonant triads can be of three different types only, though the 

each resonant triad consists necessarily of one longitudinal and two transversal wave modes. In 

turn, these resonant triads can be nonlinearly coupled. This leads to a creation of resonant chains 

assembled from resonant triads of three different types, having spectral scales in the general 

case. Cascade processes of energy exchange between the oscillatory modes are characterized not 

only by complex chaotic dynamics inherent in nonintegrable Hamiltonian dynamical systems, 

but also by the presence of multi-mode stationary motions, which are stable by the Lyapunov 

criterion. In an ideal crystal structure such stationary coherent wave ensembles can significantly 

influence upon heat properties of the system, especially at low temperatures. This is one more 

relevance of their theoretical and experimental study in micromechanics.  

The growing researcher interest in various low-dimensional objects of micromechanics, possess-

ing a spatially periodic structure, inspires theoretical and experimental investigations in the field 

of nonlinear acoustics, based even on well-known models of chains and lattices of material parti-

cles.  

Naturally, at the problem formulation, any theory should take into account that the basic tech-

niques of experiments could be focused on the study of the dynamical response of the system to 

most simple test signals. The spectrum in the response to sufficiently intense input high-

frequency signals, due to nonlinear processes, can be quite complex to identify the structure of 

the object under investigation. Therefore, one of the most important problems is to describe theo-

retically those frequency bands in which the dynamics of the system would be most predictable, 

as well it is possible. An appropriate strategy can be based on the simplest classical models, 

which can be naturally extended, if necessary, straightforwardly to quantum models which de-

scribe adequately the properties of a real microsystem.  



 114 

In this study, we present a complete classification of triple-wave resonances in a simple model of 

anharmonic chain, taking into account both central and noncentral interactions between the parti-

cles within the harmonic approximation. It is shown that a low-frequency quasi-harmonic longi-

tudinal wave, caused by central interactions, is almost always unstable. This, comparatively long 

longitudinal wave breaks up into a couple of secondary mid-frequency transverse waves, pro-

vided that the group velocity of this primary mode does not exceed that of extremely long longi-

tudinal waves.  

In the short-wave range, the triple-wave interactions are much more complicated. In the case, 

when the group velocity of the primary unstable transverse waves exceeds that of extremely long 

longitudinal waves, a multi-wave cascade process can be created, since a lot of resonant triads 

can be simultaneously involved in the nonlinear interaction due to the phase matching between 

waves. This means that the high-frequency transverse waves, the group velocity of which ex-

ceeds the group velocity of extremely long longitudinal waves, are always unstable with respect 

to small perturbations. However, together with increasing number of waves involved in this cas-

cade process, the spectral parameters of the oscillatory modes do not increase. This means that 

the energy flux is redistributed mainly from the high-frequency band to the low-frequency part 

of the spectrum of vibrations, and the number of modes, involved in the cascade process, is al-

ways a finite or countable number, at least within the first-order nonlinear approximation.  

Cascade processes of energy exchange between the oscillatory modes are characterized not only 

by a complex chaotic dynamics inherent in nonintegrable Hamiltonian dynamical systems, but 

also by the presence of multi-wave stationary motions, stable by the Lyapunov criterion.  

In microsystems, such stationary wave ensembles may be associated with coherent processes 

which can significantly influence on the macroscale physical properties such as a specific heat 

and other phenomenological parameters of the system, especially at low temperatures. Note that 

a significant progress in theoretical and experimental study on the area of nonlinear cascade 

processes had been achieved in fluid mechanics [94]94–96]. From a viewpoint of the solid 

acoustics, this theory still requires further development, and therefore, this would be focused in 

this study. Nowadays, a hot point of interest concerns with a problem of heat transfer in low-

dimensional solids possessing a crystal structure. The heat transport in crystalline insulators is 

carried due to elemental excitations, also named as phonons or elastic quasi-harmonic oscilla-

tions of the lattice. The two most important nonlinear effects in crystalline solids are the thermal 

expansion and the phonon thermal conductivity. The thermal current can arise as a population of 
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phonons deviates from its equilibrium state, because of both the diffusion and decay. Multi-wave 

resonant interactions in insulators, such as the triple-phonon break-up processes, change the qua-

siparticle population accordingly to the Bose gas model. Apart the scattering on impurities, the 

triple-phonon interactions cause a finite thermal transport at expense of mechanisms of the so-

called the Umklapp processes [97]. Thus, the thermal resistivity should necessary present at least 

at higher temperatures. At low temperatures the Umklapp processes are weakly expressed, as a 

rule. This means that the heat transfer in low-dimensional system can possess features inherent in 

ballistic phonon propagation, similar to the stationary multi-wave resonant processes which are 

of main interest in this chapter.  

Equations of motion and dispersion relations 

We consider mechanical vibrations of a simple one-dimensional chain consisting of particles of 

equal masses m , placed along a straight line at equal distances a , being at the rest. Each particle 

has two degrees of freedom on the plane of oscillation. The forces between the particles are both 

central and noncentral. Accounting for noncentral interatomic interactions leads to appearance of 

so-called transverse or bending oscillatory modes. An absolute elongation of a segment in the 

chain, nλ , and the curvature of the median line, nκ , in the vicinity of the atom number n can be 

expressed as it follows:  

( )( ) ( ) awwuua nnnnn −−+−+= −−
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where ( )tuu nn =  and ( )tww nn =  are the longitudinal and transverse components of the displace-

ment of centers of masses, respectively, which are naturally oriented relatively the Cartesian 

axes. Then the Lagrangian of the system in the harmonic approximation takes the form  

( ) ( )∑∑
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2
βκαλ&& ,       (7.1) 

where the phenomenological constants α  and β  characterize the stretching and transverse mo-

tions of the chain, respectively; the dot denotes derivative with respect to the time t . The number 

of elemental cells Z  in the chain is supposed to be large enough, i.e., ∞→Z .  
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Equations governing the dynamics of the chain of particles are derived with the help of the 

Euler-Lagrange variational principle. For the convenience of asymptotic procedures we intro-

duce a small parameter 1<<µ , using the following similarity transform: ( ) ( )tutu nn µ→ , 

( ) ( )twtw nn µ→ . The small parameter is arbitrary, for example, one can assume that 

( ) ( )( )twtua nn ,max=µ .  

In the linear limit, as 0→µ , equations of motion read as it follows:  
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Let the number of particles in the chain tends to infinity, then a solution to Es. (7.2) can be ex-

pressed in the integral form:  
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where ( )kAl  and ( )kAb  are the complex amplitudes (( )kAl
*  and ( )kAb

*  are the corresponding 

complex conjugates of the preceding terms); ( ) ( ) kantktk ll += ωφ ,  and ( ) ( ) kantktk bb += ωφ ,  

denote fast-rotating phases of the transverse and longitudinal waves, respectively; ( )klω  and 

( )kbω  stand for the natural frequencies of the normal harmonic waves, depending upon the wave 

number k . Spectral parameters of the set (7.2) are completely characterized by the following 

dispersion relations  

( ) ( ) ( ) ( )
,
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2;cos1

2
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ka

m
kka

m
k bl

−=−= βωαω       (7.4) 

which are presented in Fig. 7.1.  

These dispersion curves have three characteristic points:  

• The group-matching point in the long-wave range (indicated by 1G  in Fig. 7.1), where 

the group velocity of the extremely long longitudinal wave coincides with the group ve-

locity of the transverse wave: ( )2//arcsin
1

aakg βα= .  
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• There is also a point of group synchronism in the short-wave range (marked by 2G  in 

Fig. 7.1), where the group velocity of the extremely long longitudinal wave coincides 

with the group velocity of the transverse wave: ( )2//arcsin
2

aakg βαπ −= .  

• The phase-matching point (marked as P  in Fig. 7.1) in which the phase velocities of 

longitudinal waves coincide with that of and transverse waves: 

( )( )ββαπ 2/2arccos 2 −−= aakph .  

 

Fig. 7.1  The dispersion relation of longitudinal and transverse waves in the chain  

For most known natural materials possessing a periodic structure, a reaction of a sample on a 

transverse deformation is usually small, so the inequality 2aβα <<  holds true. This means that 

the transverse waves typically have comparatively low frequencies compared to those of longi-

tudinal waves. Therefore, in the nonlinear formulation of the problem, it is expected that the 

high-frequency longitudinal waves should be unstable with respect to small low-frequency trans-

verse perturbations. Though, one should pay attention that many artificial materials, appearing in 

recent times, commonly called metamaterials, which can have extremely unexpected and para-

doxical properties. For example, for some “telescopic” metamaterials the relation 2aβα ≈  can 

be true. This indicates, in turn, that the transverse waves may possess enough energy for efficient 

interaction between longitudinal waves due to nonlinearity. Therefore, in this study we formulate 

the general problem, namely, a question is not only in the study of the nonlinear wave dynamics 

in natural materials, but also in metamaterials in which a resistance on bending deformations can 

be compared with that of tension and compression caused be longitudinal waves.  
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Average Lagrangian. Hamiltonian  

Let the small parameter of the problem µ  be nonzero and finite. Then the solution (7.3) to the 

linearized set (7.2) can be successfully utilized to have useful information about basic properties 

of the weakly nonlinear system characterized by the Lagrangian (7.1). This is achieved by vary-

ing the arbitrary constants of integration in the time, the role of which in the present study is 

played by the complex amplitudes of quasi-harmonic waves: lA , lB , bA  and bB .  

If 0≠µ , then the solution of any quasilinear system is developed in the same form as the ex-

pression (7.3), using a formal modification of variables: ( ) ( )tkAkA ll ,→ , ( ) ( )tkBkB ll ,→ , 

( ) ( )tkAkA bb ,→  and ( ) ( )tkBkB bb ,→ . Obviously, the time variations of amplitudes would be 

the brighter with growth of the parameter µ , so that the introduction of new scales of slow 

times, i.e. tn
n µτ → , is actual.  

In addition, following the general procedure constructing the asymptotic solution, the expression 

(7.3) should be modified by adding small corrections to the kernel solution in the form of an ex-

pansion in the small parameter µ :  
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The small corrections, if it is necessary, would be determined step by step during the construct-

ing the asymptotic solutions with a given accuracy.  

The Lagrange function, after the substituting therein the anzats (7.5), and subsequent averaging 

over the fast rotating phases ( )tkl ,φ  and ( )tkb ,φ , appears in the form of so-called average La-

grangian L  whose arguments are the complex amplitudes of the quasi-harmonic waves with 

their time derivatives, as well. These arguments, inter alia, are proportional to the canonically 

conjugate variables. If one enters by a standard way the generalized moments  
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then the average Lagrangian L  can be transformed into the averaged Hamiltonian 

LpApApApAH
bbll AbAbAlAl −+++= **

** &&&& . The advantages of the Hamiltonian description, 
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compared with the Lagrangian one, are that, at least, one integral of motion is already known a 

priori , namely 0HH = , where 0H  is an arbitrary constant of integration.  

Resonance 

The average Hamiltonian, as a power series in µ , has a transparent structure:  

...3
3

2
2 ++= HHH µµ           (7.6) 

The first term 2H  is identical zero by virtue of the dispersion relations (7.4). The term 3H  is 

a cubic polynomial dependent upon the new generalized coordinates and momenta, namely, 

complex conjugate amplitudes of longitudinal and transverse waves and their derivatives. This 

term holds all the information on the dynamic properties of the system within the first-order 

nonlinear approximation. If 3H  not identical zero, then the system explores the first-order 

resonance. An alternate method, looking for the presence of resonance in the system, can be as it 

follows. The initial system of differential equations is reduced to the so-called standard form. 

The general solution to the linearized subset of the standard form is substituted into the right-

hand terms of the standard form, containing the nonlinear terms. Next, the right-hand terms are 

averaged over fast rotating phases, and if the average is not zero or contains jumps at scanning 

the spectral parameters of the system, this means that the resonance presents in the system [24].  

In particular, the dynamical system represented by the average Lagrangian L  or the average 

Hamiltonian H , experiences the resonance due to nonlinear interactions between modes being 

in the triple-wave phase matching. As a result resonant ensembles known as the triads are 

formed. There are no other resonances, except for the triple-wave resonances in the first-order 

nonlinear approximation in the system under investigation. Consequently, in the absence of 

resonance, the nonlinearity of system can be neglected, since a linear description of the system 

would be adequate in this particular case.  

Components of resonant ensembles  

The set of nonlinearly interacting triads is called within this study as a multi-wave resonant en-

semble. For the occurrence of nonlinear triple-mode resonant interaction between waves, any 

dynamical system requires an appropriate type of quadratic nonlinearity in the equations of mo-

tion, together with fulfilling the following phase-matching conditions [98] 

.; 321321 kkkk ∆++=∆++= ωωωω         (7.7) 
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Here nω  are the natural frequencies and nk  are the corresponding wave numbers of waves; 

( )nωµω min~∆  denotes a possible frequency detuning, assumed to be small compared to all the 

natural frequencies. The eigenfrequencies are numbered following the natural order: 

321 ωωω ≥≥ . It should be emphasized that the phase-matching conditions are only the necessary 

conditions for the creation of the resonant triad or triplet. The sufficient conditions arise at suit-

able structure of nonlinear terms in the equations governing the motion. Based on the analysis of 

the dispersion properties and the structure of nonlinearity, one can establish that the triple-mode 

resonance in a simple anharmonic chain of particles can be of three different types, though each 

triple can consist of one longitudinal and two transverse waves. Similar dynamical processes can 

be observed in a straight elastic bar in the long-wave limit [100].  

lbbT -type triad 

The high-frequency mode in a resonant triad of the first type, which will be referred as lbbT , is 

the primary longitudinal wave (symbol l  in the abbreviation is given for the longitudinal mode 

while the symbol b  corresponds to the transverse mode). The ordering in the indexes agrees 

with that of frequencies in the phase matching conditions (7.7). Solutions to the dispersion equa-

tion (7.4), satisfying the phase-matching conditions (7.7), in the absence of detuning, 0=∆ω , 

can be determined graphically [66, 99–101]. These solutions do exist in the wide permissible 

range of wave numbers, but only when the wave number of the longitudinal mode 1k  does not 

belong to the following “forbidden” interval:  
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In the case of long-wave processes, ( )( )ββαπ 2/2arccos 2
1 −−≤ aak , the secondary transverse 

waves propagate in opposite directions, since 032 <kk . The kinematic scheme of “longwave” 

lbbT -type triplet on the dispersion diagram is shown in Fig. 7.2.  
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Fig. 7.2  The “longwave” phase matching due to the lbbT -type triple-wave resonance. The lower 

point of the group matching is indicated as 1G ; the higher point of the group matching – by sym-

bol 2G ; the phase matching point is indicated as P ; the points 1L  and 2L  refer to the lower and 
upper boundaries of the “forbidden” zone for longitudinal waves  

The “shortwave” resonant processes, at ( )( )ββαπ 2/2arccos 2
1 −−> aak , are characterized by 

the same direction of travelling, both for the primary longitudinal and secondary transverse 

waves. A scheme of “shortwave” lbbT -triplet is shown in Fig. 7.3.  

 

Fig. 7.3  The phase matching of the “shortwave” resonant triplet wave of lbbT -type  
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blbT -type triad 

Let the high-frequency mode of the triplet of the second type, namely blbT -triad, is the primary 

transverse wave number 1, while the numbers 2 and 3 correspond to the secondary longitudinal 

and transverse waves, respectively. Then the phase-matching conditions for these three waves 

exist only in the interval ( )2//arcsin1 βαaak ≥ . Figure 4 shows a “longwave” triplet of the 

second type, wherein the all the three waves, obviously, travel in the same direction.  

 

Fig. 7.4. Scheme of the “longwave” blbT - type triad  

bblT -type triad 

Finally, a scheme of the third-type triad, named as bblT -triad, is given in Fig. 7.5. The properties 

of this triad are similar to that of the blbT -type triad. However, as it is obvious that the two secon-

dary waves, namely the longitudinal and transverse modes, can be both unstable: the longitudinal 

mode splits into a pair of transverse waves (to create a new smaller-scale lbbT -triad), while the 

secondary transverse mode breaks up into the longitudinal and the transverse waves (to form a 

smaller-scale blbT -type triad, in turn).  
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Fig. 7.5  The scheme of the “shortwave” bblT - type triad  

Summarizing the above information, related the various types of resonant triads in the chain, one 

should pay attention to that if the high-frequency decay mode is the longitudinal wave, then the 

triple-frequency resonant interactions are always allowed by the phase-matching conditions 

( lbbT -triads), except for the “forbidden” zone (7.8). If the primary mode is the high-frequency 

transverse wave, then the triple-wave resonant processes are possible only in the case when the 

group velocity of this wave is not less than that of longitudinal waves (blbT -triad), i.e., the spec-

tral parameters of the unstable transverse modes must always be above the “longwave” group-

matching point. The third type of triple-wave interaction ( bblT -triad) is clearly manifested in the 

shortwave processes, when the spectral parameters of the unstable transverse wave exceed those 

determined by the “shortwave” group-matching point. Figure 6 shows a cumulative result illus-

trating some fragments of the triple-wave resonant interactions, have been exemplified above in 

Fig. 7.2 – 7.5. Actually, the study of elementary properties of such cascade processes becomes of 

interest in this chapter.  



 124 

 

Fig. 7.6  A fragments of cascade interactions between modes belonging to triplets of lbbT -, blbT - 

and bblT -types  

Evolution equations 

lbbT -type triad 

Let the high-frequency mode of the resonant triad be a longitudinal wave. Then, after substitut-

ing the following representation of the solution:  
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into the Lagrangian (7.1), where mω  and mk  are the spectral parameters of waves entering the 

resonant triple; ( )τmA  are the complex amplitudes of quasi-harmonic waves that slowly varying 

in the time tµτ = ; ..cc  denotes the complex conjugate of the preceding terms, the evolution 

equations describing the evolution of the first-type triad take the following form:  
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Here ( )( )lbblbblbblbb iAAAiAAAcH ∆−∆−= expexp *
3

*
2132

*
1  is the average potential of the lbbT -type 

triplet; ( ) ( )ankkktlbb 321321 −−+−−=∆ ωωω  stands for a small phase-matching deruning; lbbc  
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is the coefficient of the nonlinear interaction, characterized by vanishing at the phase matching 

point (Fig. 7.7).  

 

Fig. 7.7  The nonlinearity coefficient of the lbbT -type triad vs. wave number  

The analytical value of this nonlinearity coefficient reads as it follows:  
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blbT - and bblT - type triads 

The evolution equations of the triad of the second type are completely analogous to the written 

set (7.10):  
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where ( )( )..exp32
*
1 cciAAAcH blbblbblb −∆−= ; ( ) ( )ankkktblb 321321 −−+−−=∆ ωωω . The coeffi-

cient of nonlinear interaction is expressed by the following formula:  
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Obviously, this coefficient equals zero below the “longwave” group matching point and vanishes 

at the phase velocity matching point. One can observe a change in the sign near the “shortwave” 

group-matching point. In addition, near this “shortwave” group-matching point, the nonlinearity 

coefficient blbc  can produce one more branch (Fig. 7.8). Ambiguity of the nonlinearity coeffi-

cient means that for a given value of the wave number of the unstable mode 1k , two cascade 

processes can be developed simultaneously. An example of such two triads, initiating the two 

cascades, is shown in Fig. 7.9.  

a b 

c d 

Fig. 7.8  Branches of the nonlinearity coefficient of the blbT -type triad vs. increasing values of 

the parameter β   
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Fig. 7.9  Two different blbT -type triads with the same unstable high-frequency mode marked by a 

star  

The evolution equations and the formula for the coefficient of nonlinearity bblT -type triad are 

formally described by the already existing expressions (7.12) and (7.13).  

Conservation laws for isolated triads 

The evolution equations presented, e.g. in the form of Eq. (7.10), possess the first integrals. One 

of them, obviously, is the average Hamiltonian, constant=lbbH , while the others are known as 

the Manley-Rowe relations:  
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where 2,1c , 3,2c  are arbitrary integration constants determined from the initial conditions to the 

Cauchy problem. These integrals of motion are sufficient for complete integrability of Eq. (7.10) 

or Eq. (7.12). The general solution is determined by Jacobi elliptic functions. A particular form 

of these solutions and some typical wave patterns, illustrating, in particular, processes of the so-

called decay instability over the high-frequency mode of a triad had been described in the paper 

[102].  

Cascade interaction between triads 

The waves entering the resonant triads in the chain of material particles can effectively interact, 

being the components of triads of three different types and different spectral states. To formulate 

the problem of multi-wave resonant interaction in terms of the nonlinearly coupled triads pos-
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sessing different types and spectral scales, one can follow the main ideas traced in papers [103–

105].  

There is one, not the only, main sequence governing the development of the nonlinear coupling 

between the resonant triads, provided that each triad can be treated now as an elemental struc-

tural element in cascade wave processes. To trace this sequence, one can suppose that the longi-

tudinal high-frequency mode, say, inside a given triad ( )1
lbbT , is unstable with respect to small 

transverse perturbation. Thus, the secondary transverse mode of this triad at the mid-frequency 
( )1
2ω , again, due to the phase-matching conditions, plays the role of the unstable high-frequency 

transverse mode, though, inside the new ( )2
blbT -triad of a smaller scale at the frequency ( )2

1ω , 

which, naturally, coincides with the mid-frequency ( )1
2ω . In turn, the longitudinal mode at the 

mid-frequency ( )2
2ω , being a member of the ( )2

blbT -triad, becomes unstable within the ( )3
lbbT -triad of 

the smallest scale, etc.  

It should be noted that in this model, describing a successive “engagement” of triads, one spe-

cific ( )N
lbbT -type resonant triad always presents. This is located in the lower part of the spectrum, 

which is appropriately to call as “terminator”. This triad prevents the further development of the 

cascade down the spectrum, representing the isolated triple-wave resonant ensemble. The group 

velocities of the transverse modes, entering this terminator, are always less than that of the ex-

tremely long longitudinal wave.  

In addition to this “main sequence of the engagement” of resonant triads inherent in low-

frequency processes in the chain of particles, there is one more, somewhat sophisticated type of 

the cascade processes. On the one hand, this scenario is inspired by the existence of different pat-

terns inside blbT -type triads having the same high-frequency transverse mode (Fig. 7.9), while on 

the other hand, with the occurrence of the third-type triples, namely bblT -triads (Fig. 7.5).  

Recall that the bblT -type triad is characterized that the both secondary modes, namely the trans-

verse and longitudinal ones, are unstable with respect to small perturbations. The break-up of the 

primary high-frequency transverse mode of the bblT -triad is accompanied by the simultaneous 

excitation of a new pair of triads of lbbT - and blbT -types, the high-frequency components of 

which, in turn, are the secondary low-frequency modes of the bblT -triad (Fig. 7.6). In this case, 

the triad chain branches, and this structure would be appropriate to call a resonant lattice, since 

this dynamical system would consist of several elemental resonant cascades. Namely, the secon-

dary transverse mode of oscillations, being a child of the parent bblT -triad, is the unstable mode 
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entering into the subsidiary lbbT -type triad. This blbT -triad, in turn, contains the unstable trans-

verse mode generating a new cascade of interactions accordingly to the “main sequence” sce-

nario. The second longitudinal mode of the subsidiary lbbT -triad, being unstable one, creates a 

new cascade of interactions between the oscillatory modes also in agree with this “main se-

quence” of junctions between the resonant triads. It should be noted that the total number of 

resonant triads, accordingly the above described model of break-up instability, is small, since the 

secondary mode of this bblT -type triads is always the unstable mode inside other triads possess-

ing another pattern than the bblT -type.  

Generally, the patterns of resonant interactions in the modal cascade can be represented as a tree-

like graph. Subtrees of this tree are formed at the nodes related to the bblT -type triads and some 

blbT -type triads, which are discussed above, and the crown of this tree is formed by the terminat-

ing triads of lbbT -type. Similar graphs and the related dynamic processes are studied in detail in 

papers [106, 107].  

Evolution equations of the triad chain 

If one accepts the above proposed scheme of “main sequence of junctions” between the resonant 

triads, then the average Hamiltonian of the triad chain, consisting of N triplets, can be written as 

it follows  
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1
1221212212 expexp       (7.15) 

where jβ  are the nonlinearity coefficients related to the j th resonant triplet (these coefficients, 

in turn, alternate by pairs, lbbc  and blbc , with account for the scale of spectral state of triples); j∆  

are possible small phase detunings ( )Nj ,1= ; nA  ( )12,1 += Nn  are the complex amplitudes of 

waves, slowly varying in the time τ . The natural ordering of these amplitudes is adopted in indi-

ces: 12 j-A  relate to the high-frequency unstable modes, jA2  are to the so-called “idle” modes, 

while 12 +jA  denote the “signal” ones [98]. The evolution equations of the triad chain are derived 

from the Hamiltonian formalism of mechanics:  
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ω .      (7.16) 

If one passes from the complex amplitudes to the polar coordinates  
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( ) ( ) ( ) ( )12,1exp +== NniaA nnn τϕττ ,  

then Eq. (7.16) take the form  
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and 
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where the angular variables ( ) ( ) ( ) ( ) ( )Njjjjj ,112212 =−−= +− τϕτϕτϕτψ  are called as general-

ized phases, and ( ) ( ) ( )12,1 +== NnAa nn ττ  are the modulii of the complex amplitudes. The 

last group of 12 +N  equations for the individual phases can be rewritten in the form of N equa-

tions for the generalized phases:  
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It would be noted, if the chain consists of N  triplets, then the theory of differential equations 

specifies that the first-order resonance has the order of N  [24]. 

Conservation laws of the cascade process 

Together with the obvious integral of motion (7.15), which is naturally interpreted as the law of 

energy conservation, that is valid for any number of resonantly interacting waves, the set (7.17) 

and (7.18), in the case 1=N , as it was shown above, has a pair of independent conditions known 

as the Manly-Rowe relations (7.14). The existence of these integrals of motion is sufficient for 

complete integrability. However, the system (7.17), (7.18) becomes nonintegrabile beginning 

from the number 2=N .  

Let us introduce the following notation 
22

nnn AE ω= . If 2=N , then the conservation laws in the 

form of the Manley-Rowe relations:  

constant,constant;constant;
5

5

4

4

4

4

3

3

2

2

2

2

1

1 =−=−−=+
ωωωωωωω
EEEEEEE

    (7.20) 

prescribe the following energy partition between the odd modes of oscillation:  

constant
5

5

3

3

1

1 =++
ωωω
EEE

,  

and the law of the total mechanical energy conservation  

constant
5

5

5

4

3

3

2

2

1

1 =++++
ωωωωω
EEEEE

. 

If 2=N , then the set (7.17), (7.18), together with the of the Manley-Rowe relations (7.20), has 

four obvious independent integrals of motion. The order of the set (7.17), (7.18) is seven, i.e., 

one should determine the five amplitudes and two generalized phases [108]. However, the num-

ber of available integrals of motion is insufficient for the complete integrability in quadratures. 

Suppose that the following inequality 2>N  holds true, then the amount of “missing” integrals 

of motion just increases. For example, if 3=N , the system (7.17), (7.18), together with the 

Hamiltonian (7.15) has only five independent integrals of motion:  
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which produce the energy partition between the odd modes of oscillation, analogously to the 

previous case:  

constant
4

1 12

12 =∑
= −

−

j j

jE

ω
, 

and the law of conservation of the total mechanical energy:  

constant
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1

=∑
=n

nE .  

Now the order of the set (7.17), (7.18) is already ten: one has got seven unknown real amplitudes 

and three generalized phases.  

In the general case of N  interacting triads, the set (7.17), (7.18) has 2+N  obvious independent 

integrals of motion:  
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The energy partition between odd modes of oscillations takes place in the form  

constant
1

1 12

12 =∑
+

= −

−
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j j
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and the total mechanical energy is naturally conserved:  

constant
12

1

=∑
+

=

N

n
nE .  
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The order of the set (7.17), (7.18) is equal to 13 +N  (i.e., there are 12 +N  unknown amplitudes 

and N  unknown generalized phases). The available set of conservation laws is obviously insuf-

ficient for the complete integrability in terms of quadratures. Therefore, one should recognize 

numerical methods to be the only effective way to study the problem in detail. It should be noted 

that the numerical simulation confirms that the problem becomes very difficult even at 2=N . 

This indicates inefficiency of looking for additional conservation laws, different from the Man-

ley-Rowe relations (7.21), in order to significantly reduce the order of the differential equations 

(7.17) and (7.18) until the complete integrability. An algorithm dealing with such quadratic con-

servation laws is described in detail in the work [109].  

Stationary waves in resonant chains 

In general, the evolution of waves described by the nonlinear Hamiltonian system (7.17) and 

(7.18) is very complex, including variety of chaotic motions, limited by the energy conservation 

law constant=H  and the Manley-Rowe relations (7.21). Among the entire set of motions, the 

natural interest is attracted to the stable stationary multi-mode quasi-periodic oscillations which 

can appear in the microsystem under small nonconservative perturbations, such as temperature 

effects. Indeed, at certain relations between the amplitudes and phases of quasi-normal waves, 

the chain of resonant triads can be involved into a so-called reactive nonlinear interaction [110], 

which conserves the shape of the resonant ensemble. Simplest stationary solutions to the set 

(7.17) and (7.18) are the harmonic waves, periodic in the space and time.  

Spatially homogeneous solutions 

We study the properties of stationary waves. A particular interest is in the amplitude dispersion, 

i.e., the dependence between the additive corrections, jΩ , to the natural frequencies of quasi-

normal waves jω  and the amplitudes ja . To determine the parameters of spatially homogeneous 

stationary solutions of system (7.17), (7.18): 

( ) ( ) ( ),12,1exp +=+Ω= NniaA nnnn ξττ         (7.22) 

we explore 12 +N equations (7.19), which imply the following relations  
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and the phase-matching conditions for nonlinear corrections:  

,;0 0
1221212212 nnnnnnn ψξξξ =−−=Ω−Ω−Ω +−+−        (7.24) 

where 0
nψ  are arbitrary constants of the generalized phases. The phase-matching conditions 

(7.24) are determined by necessity for the existence of nontrivial steady states; therefore, the 

generalized phases should satisfy the following restrictions:  

,2/ jj mππψ +=            (7.25) 

where jm  are arbitrary integers. The latter manifests the phenomenon of phase synchronization 

in the system, which can lead to a neutrally stable periodic or quasi-periodic motion, similar to 

the stable planetary orbits in the Hamiltonian mechanics [111].  

To obtain the solution of the set (7.23) and (7.24), one can use the method of mathematical in-

duction. For a single triad, as 1=N , the system (7.23), (7.24) gets the following form  
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If 3=N , then the solution to Eq. (7.23), (7.24) has the form  
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Finally, for 5=N  the solution is as it follows  
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Solutions to the set (7.23), (7.24) for an arbitrary value N  are given in the Appendix.  

Obviously, the set (7.23) and (7.24) is underdetermined one. Therefore, to study the properties of 

stationary processes, it is necessary to allow for a number of assumptions, but without losing the 

generality. For example, suppose that the initial phases of individual waves, 0
jj ξξ = , are known, 

and the nonlinear corrections to the frequencies, jΩ , are directly proportional to those of normal 

waves, jω , with the proportionality coefficient jj ωκ /Ω= . Then the algebraic system of equa-

tions (7.23), (7.24) has a unique solution ja , if this set is consistent. In this case, the spatially 

homogeneous solution of the problem can be interpreted as rotations of the imaging point around 

a ( )122 +N -dimensional torus in the phase space. The radius vectors on this torus are the con-

stant amplitudes of waves, ja , and the corresponding angular coordinates vary linearly, i.e., 
0
jj ξτ +Ω . In the given particular case the motion will be strictly periodic, because both the fre-

quencies jω  and the nonlinear corrections to them jΩ  satisfy the phase-matching conditions 

(7.25). This means that all phase curves are closed, and not everywhere covers the torus, having 

a finite number of rotations. The amplitudes of the stationary waves are directly proportional to 

the ratio jj ωκ /Ω= , which plays a role analogous to the temperature of the thermostat. For in-

stance, let κ  be zero, then all amplitudes are also zeroes. Examples of stationary solutions for a 

cascade consisting of five triads, in the case of the amplitude proportional dispersion, at 1=κ , 

are shown in Fig. 7.10.  

a b 

Fig. 7.10  The amplitudes of stationary wave at the amplitude-proportional dispersion (a – de-
pendence vs. the frequency; b – the same, vs. the wave number)  

Let us suppose that the nonlinear corrections, jΩ , are not proportional to the natural frequencies, 

jω , but to the wave numbers: jj k=Ω . Then one obtains somewhat different stationary distribu-
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tion (Fig. 7.11), although the modal cascade consists of the same five triads, as in the previous 

example shown in Fig. 7.10.  

Besides the parameters specified in the above examples for the five interacting triads, one can 

find such sets of the frequency corrections jΩ , also formally satisfying the phase-matching rela-

tions (7.25), but such that the stationary solutions are absent. This means that although there are 

infinitely many of various stationary solutions, nonetheless, some selection rule that limits this 

set should exist there. The study of this question is nontrivial task, since the method for con-

structing the stationary solutions does not operate with elementary functions (cf. the Appendix).  

a b 

Fig. 7.11  The stationary values of amplitudes at frequency corrections proportional to the wave 
numbers (a – dependence upon the frequency; b – the same, vs. the wave number)  

Energy distribution of stationary waves in the cascade 

From the solutions to the algebraic equations (7.23) and (7.24) one can deduct an important con-

clusion on the patterns of the energy distribution between the quasi-harmonic modes of oscilla-

tions for the spatially homogeneous process. Namely, the energy of the modes with even indices 

is in the one-third ratio to those with odd indices. Moreover, the energy parts between the trans-

verse modes with odd indices and longitudinal modes, also with odd ones, are equal. In other 

words, if the “total energy” of the stationary process is defined by the expression  

Ea jj

N

j
j =Ω∑

+

=

2
12

1

ω ,  

then the following outstanding relation:  
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holds true. In particular, this fundamental law can be traced in Fig. 7.10 and Fig. 7.11, though 

this is not so obvious at the first sight. This situation confirms that the analytical conclusions are 

always more capacious than any graphic illustration. It may be noted that in the case of a single 

triad, the stationary solution is exactly associated with the equipartition by the Rayleigh-Jeans 

law.  

Equation for small perturbations and stability of steady states 

Perturbed motions in the chain, composed of N resonant triads near the stationary solutions, are 

prepared as it follows  

( ) ( )[ ] ( )( ),exp τηξτττ jjjjjj ibaA ++Ω+=         (7.26) 

where ja  are the constants characterizing the stationary values of the amplitudes of waves; 

( )τjj bb =  are small perturbations of these variables in the time τ ; ( )τηη jj =  stand for small 

perturbations to the individual phases of waves ( )τϕ j  near the stationary values of the general-

ized phases of resonant triads nψ  (7.25). The indexes vary within the following limits: 

12,1 += Nj  and Nn ,1= . If the perturbations jb  and jη  are absent, then the solution (7.26) is 

stationary and spatially homogeneous, i.e., the parameters ja , jΩ  and jξ  satisfying Eq. (7.23), 

(7.24).  

The dynamics of the perturbed system near the stationary orbits is characterized by the following 

Lagrangian  
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   (7.27) 

This expression can be obtained from the original Lagrangian system (7.1), if one, after the sub-

stitution of the expression (7.26) therein, would neglect the higher-order terms, beginning from 

the cubic nonlinearity.  

The set of linear differential equations of motion for small perturbations, generated by the La-

grangian l , if one takes into account the phase-matching conditions (7.24), reads as it follows:  
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and 
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   (7.29) 

The characteristic equation to this set of ordinary differential equations has ( )122 +N  roots. 

Among these roots 22 +N  are zeroes, while the remaining N2  roots are nontrivial complex 

conjugate roots. Moreover, these are the different purely imaginary ones. Obviously, the pres-

ence of zero roots is because of that not all the sought variables in the set (7.28) and (7.29) are 

independent. One can always reduce the order of the original set by introducing N  generalized 

phases ( )Nnnnn ,112212 =−− +− ηηη , instead of using the individual phases ( )12,1 += Njjη . In 

addition, the amplitude of the stationary waves, ( )12,1 += Njbj , are coupled by 1+N  inde-

pendent  constraints, in the form of the Manley-Rowe relations (7.21).  

As a result, the total number of constraints, imposed on the system, is equal to 22 +N . This one 

coincides with the number of zero roots. The rest of N2  purely imaginary roots are inherent in 

linear pendulum-like oscillatory systems possessing N  degrees of freedom.  

A concluding remark is that the measure of the perturbed motion of the triad chain near the sta-

tionary orbits should coincide with that of the small perturbations. In this interpretation, the sta-

tionary spatially homogeneous solutions are stable by the Lyapunov criterion. To prove the sta-

bility properties, one can also use the method of Lyapunov functions. Naturally, an appropriate 
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role of the Lyapunov function can play the Hamiltonian obtained by a suitable canonical trans-

formation of the Lagrangian (7.27).  

Heat Transport in low-dimensional systems 

The quality of the heat transport depends upon the phonon scattering induced by crystalline de-

fects. It is well known that the mean free path, τgvl = , is associated with the motion of a pho-

non, travelling by inertia during some characteristic relaxation time τ , where gv  denotes the 

group velocity of the quasi-harmonic wave packet. Since the dispersion of longitudinal waves 

prescribes much greater group velocities than those of transverse waves, one can reasonably sup-

pose that the thermal conductivity should be mainly caused by longitudinal phonons. It is evident 

from many experiments on glass and other bulk substances that the wave refraction appears due 

to the presence of small uncorrelated impurities. This is exhibited be the Rayleigh scattering, 

which traditionally answers on the question “why sky is blue” by predicting a transparency for 

the longwave packets along the beam of radiation. Point out that the Rayleigh scattering appears 

mainly because of random fluctuations, in contrast with the Brillouin scattering, when the pa-

rameters of a wave guide are regularly correlated because of dynamical processes. In any case of 

scattering, one can suppose that the lifetime should decrease with increasing number of atoms in 

the unit cell, and therefore the thermal energy conversion through materials should be much 

more efficient in lower dimensional materials at the nanoscale [112].  

The heat flowing per second through unit cross section area in isotropic media can be evaluated 

following the phenomenological Fourier law: Tk∇−=q , where k  is the coefficient of thermal 

conductivity, while sign minus directs the heat to travel always from the hot region to the cold 

one, accordingly to the second law of thermodynamics. In the case of a one-dimensional wire, 

when the temperature difference between the hot and cold ends is small, the heat flowing per 

second is approximated by the formula LTkq /∆= , where L  denotes the length between the 

two thermal baths.  

To study a heat current in a perturbed Hamiltonian multi-particle system, one should connect it 

to heat baths. For instance, the Langevin model is resulted by modifying the equation of motion 

of those particles which are immediately in a contact with two thermostats [113]:  
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where ( )t1η  and ( )tNη  are the Gaussian stochastic white-noise forces with zero mean, which 

maintain the constant temperatures1T  and NT  of two reservoirs. The forces ( )t1η  and ( )tNη  are 

supposed to be such that mean values of the kinetic energy on the ends of the system model the 

temperature effect: 11
2
1 2/ KTmp = ; NNN KTmp =2/2 . The energy balance equation can be 

written as it follows  

qdTdH =/ ,  

where ( ) ( ) NNN mptmptq // 111 ηη +=  is the power of stochastic forces. The thermal conductivity 

can be evaluated as TqLk ∆= / . Thus, the thermal conductivity can be calculated using either 

spectral analytical approach, applicable for some linear systems, or numerical Monte Carlo 

methods in the general case.  

A question “does the Fourier law hold true in low-dimensional systems” has attracted increasing 

attention in recent years [112, 113]. The thermal conductivity can be evaluated in terms of the 

spatial size of the system, i.e., αβLk ~ . A normal diffusion implies a normal heat conduction 

obeying the Fourier law ( 0=α ), an anomalous heat conduction is characterized by a divergent 

thermal conductivity ( 0>α ), while an anomalous heat conduction has an insulator thermal con-

ductivity ( 0<α ). For instance, a ballistic thermal transport inherent in the quasiharmonic wave 

motion, leads to a divergent thermal conductivity, i.e. 1~α . One can refer to a numerical evi-

dence for the universal law ( 3/1~α ) in one-dimensional systems, although nowadays many 

puzzles remain so far, including the accuracy of model (7.30).  

Resume 

The present theory of stationary cascade processes is valid only when the energy of nonlinearly 

interacting oscillators does not exceed the critical value determined by the equality TkBj =ωh , 

where h  is the Planck constant; jω  are the classic natural frequencies of normal modes; Bk  de-

notes the Boltzmann constant; T  is the temperature of a thermostat. The motion of the system in 

this limit is represented by long-wavelength acoustic waves, the propagation of which is inevita-

bly accompanied by the energy dissipation. Therefore, the formation of stationary resonant proc-
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esses, excepting trivial ones, is impossible. However, this is not so, if the energy of oscillators is 

comparable to that of thermal phonons, i.e., jωh . But in the latter case, it is absolutely necessary 

to have a quantum description, which inevitably leads a number of specific features. Quantum 

effects imply the vacuum states of the system, due to the non-commutatively properties of the 

creation ( +a
)

) and annihilation (a
)

) operators of phonons, as well as the appearance of discrete 

energy levels. Following a standard procedure of second quantization [114, 115], the Hamilto-

nian operator of the system, corresponding to the classical Hamiltonian  
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where L  is the Lagrangian of the original system (7.1), after the normalizing transformation, 

taking into account the processes allowed only the law of conservation of energy, is resulted in 

the following form  
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The first term in this operator (7.30) describes the excitation of oscillatory modes, at the fre-

quency jω , by quanta of energy jωh . The individual modal energy equals to ( ) jjn ωh2/1+ , 

where the integer jn  determines the degree of excitation in the given oscillator or the number of 

phonons. The quantity 2/jωh  corresponds to the vacuum states of the system in the absence of 

photons. The second term relates to the wave resonant coupling between phonons or the binding 

energy.  

Following the Heisenberg picture, the time evolution equations of the creation and annihilation 

operators:  

( ) ( )HaaH
i
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HaaH
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dt

ad ))))

h

)
))))

h

)

−=−= ++
+

;         (7.31) 

are analogous to equations governing the resonant triads (7.16). The evolution equations (7.31) 

have the same number of conservation laws and the total energy of quanta is also the same, as it 

follows from Manly-Rowe conditions (7.21). Therefore, it is natural to expect that the properties 

of stationary solutions to Eq. (7.31) will be similar to those obtained in the classical approxima-

tion within a context of this study. However, one should pay attention to the fact that Eq. (7.31), 

in a contrast to the set (7.16), may have solutions which are not reducible to the classical solu-
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tions [116, 117], since the occupation numbers and the phase of oscillators, being the canonical 

variables are not commuting quantities. This fact should be studied in detail.  

Moreover, one more question arises immediately. In the general case, the average degree of exci-

tation of each oscillator at the given temperature T  is determined by the Bose-Einstein statistics: 
( )( ) 11/exp −−= Tkn Bjj ωh . However, for the stationary processes, for example, in a metamaterial, 

the phenomenological parameters of which satisfy the relation 2aβα ≈ , the Bose-Einstein dis-

tribution could be unfair. It argues that the Bose-Einstein statistics assumes zero binding energy 

of oscillators, in average. In the case of stationary cascade processes, the phase coherence, simi-

lar to the phase matching conditions (7.25), is necessary. Thus, the binding energy cannot be 

zero. Moreover, this is a sign-definite quantity. If the binding energy would be negative, it indi-

cates the spontaneous formation of a coherent dynamic structure composed of nonlinear interact-

ing oscillators, since the energy of this structure is less than that of the corresponding system of 

decoupled oscillators. Otherwise, in order to maintain the structure, the energy is required from 

outside, which would be equal or even some higher than the binding energy, and, therefore, this 

system becomes unstable. Thus, if the stable stationary cascade processes are physically realistic, 

then it can open an opportunity to create new MEMS devices with highly efficient heat and 

thermal conductivity parameters. But this is a topic requiring much more careful study.  
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CONCLUSION 

When I was younger, I had a chance to practice as an engineer. I went to the task of calculating 

the stress-strain state of a thick cylindrical tube. This problem was complicated by a high tem-

perature and high pressure picks inside the tube. After collecting a lot of information on thermo-

physical properties of the tube material, plastic flow models, etc., the time come to dive in a 

FEM simulation. Barely nine months, as the first results appeared. It was necessary to analyze 

the obtained results on the adequacy. There were reasons to think: what it was a difficult work, 

this absorbed all my small student skills. But all should not be hastily for me, and, after a week 

or two, one experienced engineer «hurried» with a little help, seeing the futility of my troubles in 

ensuring that everything is calculated OK. He pulled off a book from the shelf, opened this one 

to the right page and said “Read it”. There was a very simple formula from the well-known 

Lamé problem describing a deformed state in pipes under internal pressure; of course, I was well 

acquainted with this theory. Seeing that I have instantly read, my helper took a calculator in a 

couple of minutes, and then, slightly glancing at the listing of my calculations, said, “Look at”. 

And there was a small miracle: the result on the calculator with a precision of three decimal 

points was exactly the same as in my sophistical calculations. Not showing him my admiration, I 

said that I had no doubt of the validity in the result, but still – why have we so difficult and for a 

long time worked over the evidence truth, in the walls of this esteemed company. He smiled and 

said “when you grow up, maybe, you will know why”. Perhaps, it was my first lesson in a prac-

tical engineering. After the while, I have understood why sometimes developers propose to the 

user that product which is wanted to. But still, it is better to write computer games to the public, 

than to play them; at least, this will not be bored.  

It seems that a practical engineering activity requires a certain mental alertness. It is better not to 

rush in the pursuit of the result, in order to get a «decent remuneration». For example, consider 

the deformation of a straight elastic thread:  

( ) 11 22 −++= xx wuε , 

where u  and w  are longitudinal and transverse components of the displacements of points of the 

thread along the Cartesian axes x . Subscript denotes differentiation with respect to the spatial 

coordinate. This expression is easy to obtain, based on the Pythagorean Theorem. Let us interest 

in small deformations, and then the formula can be simplified by getting rid of radical, using a 

formal Taylor series expansion:  
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2/2/ 22
xxx wuu ++=ε . 

Now check the result. Let there are no transverse displacements, then the exact formula gives the 

correct result xu=ε . But, the approximated formula contains the following error: 2/2
xu . What to 

do? Formally, the series expansion is valid. This is a convergent series, but the expansion looks 

to be much more complicated than the original function.  

Let us consider another example. Someone needs to move the drawer in the kitchen, perhaps, 

without worrying of the safety for the floor surface. How, will it be easier to cope with the case: 

to pull or push it? Obviously, it is easier to pull this one. Let us try to formalize the problem: all 

is known: the mass of the box, the coefficient of dry friction, etc. Let us believe in the “school” 

formula for the dry friction. And, it turns out that the direction, along which this cargo is re-

placed, should not affect on the mechanical work performed at the same distance. This is, of 

course, for the first formal look. But, really, it is not so. How to be?  

Let us consider one more example as a destructive obsession of paradigms. Consider the differ-

ential equation modeling the oscillator with a specific restoring force:  

01 =+ − xxx α
&& . 

It is obvious that solutions to this equation have essentially different left- and right-side limits 

near the origin, as power series. Nevertheless, many researchers, mainly from the East Europe, 

believe in the smooth exact solution to this equation in the form of the so-called Ateb-function. 

The interested reader can easily find them in relevant works traced in the World Wide, accompa-

nied by «proofs» with expanding these mythical functions in Taylor or Fourier series, and their 

various applications in «practice», as well. Obviously, that is wrong, since we deal with 

nonsmooth functions. At the same time, one can find informative and scholarly works over the 

related questions in the qualitative theory of ordinary differential equations with nonanalytic 

right-hand terms. Erratum humanum est. De omnibus dubitandum est.  
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APPENDIX  

Algorithm to find stationary oscillations of the triad chain 

The method of mathematical induction is utilized to construct solutions to Eqs. (7.23) and (7.24).  

Step 1. 

Let 1=N . Consider the vector 13× :  

















=
1

1

1

1,1M  

and the scalar 2
13213211,1 / βωωωΩΩΩ=E , characterizing the modal energy in the chain consisting 

of a single resonant triad. Vector [ ] 1,11,1
2
333

2
222

2
111 4/4/4/ EMaaa

T =ΩΩΩ ωωω  gives the solu-

tion to the problem at 1=N .  

Step 2. 

Let 3=N . We consider the matrices 3,1M  and 3,3M , dimension 27× :  
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10

10

10

00

01

01

01

3,1M ; 





























−=

10

10

00

10

00

10

10

3,3M  

and vectors  

[ ]3,11,13,1 EEV = ; [ ]3,33,3 0 EV = ,  

where 2
3

765765
3,1 β

ωωωΩΩΩ=E ; 
44

76217621

2

31

2
3,3 ω

ωωωω
ββ

β
Ω
ΩΩΩΩ









=E .  

The vector [ ] 3,33,33,13,1
2
333

2
222

2
111 4/4/4/ VMVMaaa

T +=ΩΩΩ ωωω  gives a solution of the prob-

lem for 3=N .  
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Step 3. 

Let 5=N . We introduce the matrices 5,1M , 5,3M  and the matrix 5,5M  of the dimension 311× : 
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5,5M  

as well as, the vectors 5,1V , 5,3V  and 5,5V  (dimension 13× ):  

[ ]5,13,11,15,1 EEEV = ; [ ]5,33,35,3 0 EEV = ; [ ]5,55,5 00 EV = , where  

2
5

1110911109
5,1 β

ωωωΩΩΩ=E ;  

88

111065111065

2

53

4
5,3 ω

ωωωω
ββ

β
Ω
ΩΩΩΩ









=E ;  

8844

11106211110621

2

531

42
5,5 ωω

ωωωωω
βββ

ββ
ΩΩ

ΩΩΩΩΩ








=E .  

The vector [ ] ( )∑
=

−−
+−=ΩΩΩ

3

1
5,125,12

12
111111

2
222

2
111 14/...4/4/

i
ii

iT
VMaaa ωωω  provides the solu-

tion to the problem at 5=N .  

Step i . 

Let the solution to the set (7.23), (7.24) is available at 32 −= iN , where i  is the number of pre-

vious iterations. Auxiliary matrices 2,1 −NM , 2,3 −NM , ..., 2,2 −− NNM  have dimensions 

( ) ( )112 −×− iN . Auxiliary matrix, prepared to get a solution on the next iteration i : NM ,1 , 

NM ,3 , ..., NNM ,2− , are obtained by increasing the dimensions of the corresponding matrices at 

the current iteration, 1−i  until ( ) iN ×+12 , by adding zeros on the positions that appeared due to 
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the expansion of all the matrices, except the last column. In this case, the principal minor of the 

new matrices are the same matrix in the current iteration. The last column of the new matrix is 

obtained from the previous column by the shift its elements four rows down. The top four posi-

tions of the last column of the new matrix are occupied by zeros. The matrix NNM ,  has the same 

dimension as the extended matrix. It is filled with zeros except his last column. Positions of the 

first and the last element in the last column in this matrix are filled by units. Internal positions of 

elements of this column are filled by quartets of alternate numbers: 1, 0, -1, 0. The dimension of 

the auxiliary vectors 2,1 −NV , 2,3 −NV , ..., 2, −NNV  on i -th iteration is ( ) 11 ×−i . Let these vectors are 

known and have the following form:  

[ ]2,17,15,13,11,12,1 ... −− = NN EEEEEV ;  

[ ]2,37,35,33,32,3 ...0 −− = NN EEEEV ;  

[ ]2,57,55,52,5 ...00 −− = NN EEEV ; …;  

[ ]2,22,2 ...0000 −−−− = NNNN EV .  

Then the auxiliary vectors solving the problem on the i -th iteration appear as:  

[ ]NNN EVV ,12,1,1 −= ;  

[ ]NNN EVV ,32,3,3 −= ;  

[ ]NNN EVV ,52,5,5 −= ; …;  

[ ]NNNNNN EVV ,22,2,2 −−−− = ;  

[ ]NNNN EV ,, ...0...00= ,  

where the last element of the vector NV ,1  is calculated by the formula  

2
1221212212

,1
N

NNNNNN
NE

β
ωωω +−+− ΩΩΩ= ,  

and the remaining unknown elements of the vectors NV ,1  are calculated with increment two by 

the index j : ( ) 2/1..1 −= Nj . The last components of the vectors are given by  

( )

( )

jN

jN

jN

jN
NjNj EE

−

+−

+−

−
+ 













=

µ
µ

β
β 1

2

1
,,2 ,  
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where ∏
−=

−−Ω=
1

1
22

i
ininn ωµ .  

For example, if 1=j , then the last expression reads 

2222

12242521224252

2
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+−−+−−

−

−

Ω
ΩΩΩΩ
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N
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ω
ωωωω

ββ
β

. 

Let j  be two, then  

22622262

12242528292122428292

2
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ωω
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ββ
β

. 

The vector [ ] ( )
( )

∑
−

=
++

+
+++ −=ΩΩΩ

2/1

1
,12,12

12
121212

2
222

2
111 14/...4/4/

N

i
NiNi

iT

NNN VMaaa ωωω  gives a 

solution to the problem for arbitrary value N . Obviously, the induction basis is presented by the 

steps 1 and 2, the step number i  is inductive, while the step 3 is shown for the illustration of cal-

culation only.  

Point out that this algorithm for finding the stationary solution represents a standard procedure 

for calculating the nonelementary functions.  

It is important to note that for any even number of nonlinearly interacting triads the stationary 

solutions are absent. This impacts the fact that the phase synchronization, which leads to station-

ary regimes of oscillation is possible only for the systems consisting an odd number of triads 

only.  


