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INTRODUCTION

Everyone could observe as a little child meets wighlayground swing for first time. It seems
that the swing is very easily, without any busycsi and it is almost obvious that this game is
naturally given to children, maybe, from the bir&t.the same time, the child, being loaded into
the swing, would get a first small amazement 4saléady to enjoy, but this swing does not want
to sway for some reason. Initially, someone mayp i by swaying. Then, maybe not imme-
diately, but still soon enough, the understandimayy to get rid of helper and any troublesome
custody assistants, will come: it is necessaryeaimply adjusted to the rhythm and small, al-
most imperceptible, pushes are need to masteratine gompletely. Maybe, one can remember a
school basketball court: it is so easy to navighteugh it, just holding the ball in any position
by some “van der Waals” forces at the fingertipg] alaying, thus, a split second to take the
next tricky maneuver. Thus, the concept of reso@ascovery affordable intuitively almost for

everybody.

When the time will come not to play, but for a wioik activity, for example, as a mechanical
engineer, then this is the time finally to answertloe essential question: what is the resonance?
One can read in “Encyclopedia Britannica” the falllog lines: “resonance, in physics, rela-
tively large selective response of an object oystean that vibrates in step or phase, with an ex-
ternally applied oscillatory force. Resonance wiest investigated in acoustical systems such as
musical instruments and the human voice. An exawifpéeoustical resonance is the vibration
induced in a violin or piano string of a given pitevhen a musical note of the same pitch is sung

or played nearby.”

The above text has an undoubted value: now it\sools that in the case of the experience in life
with a swing, the so-called parametric resonaneamsrged, and the controlled pushes in a bas-
ketball court can be attributed to the ordinaryoresice. But the mentioned above definition
leaves some dissatisfaction: it seems that oncm aga have got only small and insignificant
details, while the nature of this phenomenon hasadly known before the readirgpriori.
Also, somewhat is alarming in the frequently cifgatase characterizing the resonance which is
“accompanied with a sharp increase in the amplitutieis passage associated with something
uncontrolled. Though, almost any child had a chaaaeake sure: it is very easily to handle and
gently drive by the resonance. The question is mdigelosed to the end: it is not clear how to
recognize the resonant phenomena in practice, Inisvnbay be formalized mathematically,

whether the resonance has place or not in anyfgpease? Also, there are many adjectives to
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the word “resonance” in the literature, for exampebeternal and internal resonance, the absolute
and stochastic resonance, linear and nonlineareine And how can one do recognize the es-
sence of this physical phenomenon for such an angsdof terms? It turns out that the mathe-

matical formalization of the resonant phenomenodififscult enough. Let us refer back to one
more appropriate definitionLét y((;) is the Hamiltonian, then zer®=0 is a fixed point of the

set(l.l)and A = ()ll,..,)ln) is the vector of eigenvaluags of the linear part of the system, so that
A exhausts all its eigenvalues. The Hamilton';a(f;) (and the syster(iL.1))is in resonance, if

the equation
(p.,2)=0 (3.1)

has a nonzero integer solutignJZ", p#0 (Z" is a group of alln-dimensional integer vec-
tors) ... In general, if at least ondj =0, there is a resonance and its order is equal tiy,in

since the equation (3.1) has a solutipr=e;“. The set of equations (1.1) is the following:

¢;=0ylon;; n, =-0dylod, (j =l_n), where {; and 77; are canonically conjugate coordi-

nates.

From this definition it follows that the resonanmay present in Hamiltonian systemwhich

must possess, at least, the first integral. Intaddithe phenomenon of resonance can be ob
served not only in non-autonomous systems, butialdbe autonomous Hamiltonian systems,
where no external forces act. Moreover, it is eojuired a proximity or coincidence between the
resonant frequencies or eigenvalues. One woulavask can be found of interest in Hamiltonian
systems which are almost absent in engineeringipe&cBut, the Hamiltonian systems are gen-
eral in the nature. For example, one can refeh¢ostability of the solar system that conserves
guasi-periodic motions during milliards years. @a tontrary, the instability of the Pluto's orbit
due to the resonance caused the recent exceptibis afelestial body from the family of planets
of our solar system. Most phenomena in the micnocase also described by the Hamiltonian

mechanics.

Let us pay attention to another pragmatic definitod the resonance adapted for oscillating sys-

tems: ‘First of all it is necessary to define the resoraiand indicate on what grounds can es-

! Bruno, A.D.:Bounded Three-Body Probleauka: Moscow (1990) [in Russian]

2 A similar approach can be found in Arnold, V.lakin Mathematical aspects of classical and
celestial mechanicd/INITI: Moscow (1985) [in Russian]



tablish its presence in the syst¢l2.2) before solving the problem. We give a definitionthis
purpose through the time-average of functi@(sg),x,g) and X(¢,X,£):

@ (4,x,€)= |im% ®(wt +6,,...w,t+86,,x et

Tooo

=4 ot—y

(22.9)
Xo(#.x.€)=lim lex(a)lt +6,,...,0.t+6_,x &)t

T oo 0

These expressions represent the average valuég oight-hand terms of the systép2.2) with
respect to the time, calculated along the trajegtoir the degenerated systém: O):

X =const, ¢ =mt+0.

The function(22.9) considered as functions of = (al,...,am), can have a point of disconti-
nuity. That is the frequencies at which the fumgi®2.9) are discontinuous, and thus is called
as resonant. Here, the equations (22.2) are the followingt = m(x)+&a®(g,x,s);

x = eX(#,x,£), where® and X are 27 -periodic functions for all phases.

From the above quotations, we can conclude thatvery difficult, and perhaps impossible to
create a context-free (i.e., devoid of any refeeettc additional information) definition of the
resonance phenomenon. It is too capacious conoepte the same as a concept of information
or a concept of algorithm. It is possible to giveed of various definitions, and all will be OK in
their own aspect, but almost all would be incormgldtherefore, there is no place to fundamen-
tal, theoretical and mathematical foundations dbswg the resonant phenomena in this booklet.
This deals with some specific applied problems rofieeering only, where the resonant phe-

nomenon plays a key role.

This monograph consists of seven chapters. Initeedne, on the basis of specific examples,
some general information is referred to mathemhatethods from the theory of nonlinear oscil-
lations. The reader, having enough skill over gubject, may pass immediately to the second
part, which discusses some new aspects relateldet&ommerfeld effect, well-known in me-
chanics. The third chapter describes the synchatiniz phenomenon of a pair of asynchronous

rotors mounted on an elastic foundation. The gaediow to control the synchronous motion by

3 Zhuravlev, V.F. and Klimov, D.MApplied Methods in Theory of Oscillatiod$auka: Mos-
cow (1988) [in Russian]



dampers is posed, as well. The fourth chapter exasrthe effect of thermo-mechanical instabil-
ity in dampers, which can lead to undesirable dynahnegimes in the system. The fifth chapter
examines dynamical effects of the geometric noaliie of the ring resonator of a solid state
gyro, which represents an angle sensor for aimsestial navigation. The sixth part is devoted
to the theory of the resonant bolometer. This lggh precision instrument for measuring under
cryogenic temperatures. The seventh chapter stuthaBnear resonant interactions between
guasi-harmonic waves in a one-dimensional anharngmain, based on a simple mathematical
model originated from the geometry of central amehaentral interactions between particles,
within the so-called harmonic approximation. Isfeown that an ideal crystal structure allows for
stationary coherent wave ensembles which can signify influence upon the heat properties of
the system, especially at low temperatures. The ma@a is to find the most optimal version of
the absorber of the resonant bolometer. All thasestipns, discussed throughout the text, are
almost independent problems from the viewpointrajieeering, though being united by a com-

mon analytic approach based on asymptotic methrods the nonlinear theory of oscillations.

The main purpose of the first four chapters is &star the mathematical apparatus of asymptotic
methods to study specific dynamic properties ofmeaal systems in the presence of the
Sommerfeld effect, the synchronization phenomemahthe thermo-mechanical instability, as
well. This should help to understand how to manifiesse physical effects in practice, when one
operates with complex technical system, for exangaleh as railway equipment, where, as a

rule, there is a variety of electro-mechanical gr@mal phenomena.

In the fifth chapter, we propose a new type ofwlae excitation of a ring resonator gyro, asso-
ciated with navigation systems for long-term spacgsions up to fifteen years. The main idea is
to use the instable properties of the axisymmaiscillatory mode in the axisymmetric thin-
walled ring resonator. The break-up instabilitytieé high-frequency axisymmetric mode is ac-
companied by the resonant excitation of a pairretgssing bending waves due to the so-called
triple-wave resonant interactions between oscilatoodes entering this resonant ensemble. The
triple-wave resonance combines advantageously thattparametric and the position types of

wave excitation in the presence of energy dissipati

The sixth chapter examines a model of the resdb@lometer, the operation of which is based

on the conversion of the electromagnetic radiaiida the heat energy by a heat sensor inte-

grated into a high-Q resonant circuit. Oscillatiomshe resonant circuit are supported by the low

noise self-excited generator of periodic oscillasi@t given amplitude and frequency, which op-
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erates based on the physical properties of thepiesa junction. The heat-sensitive receiving
element, implemented into the resonant circuit,egi@mces a transition from the superconduct-
ing phase to the normal resistive state. The measemt procedure is to register a change in the
amplitude and phase envelopes under the incomaaremagnetic radiation flux. The resonant
bolometer relates to measuring equipment and carsée in devices detecting electromagnetic

radiation, especially to determine the weak sigmaibmillimeter-wave spectral range.

The seventh chapter reveals the multi-wave resoeas¢mbles in a one-dimensional anhar-
monic chain of particles with allowances for thentcal and noncentral internal forces. These
ensembles are formed both due to the quadraticnsamity of the system, and due to satisfying

the phase-matching conditions. The resonant tesdsring the multi-wave ensemble can be of
three different types only, though each resonaad tonsists necessarily of one longitudinal and
two transversal wave modes. These resonant trig@dscalinearly coupled. In general case, this
leads to a creation of the resonant lattices forfnach resonant triads of three different types

and the spectral scales. Cascade processes ofen@ttange between the oscillatory modes are
characterized not only by complex chaotic dynamidserent in nonintegrable Hamiltonian dy-

namical systems, but also by the presence of mdtie stationary motions, which are stable by
the Lyapunov criterion. In the ideal crystals sgthtionary coherent wave ensembles can sig-
nificantly influence on the energy partition betwegaves, especially at low temperatures. This

is a relevance of their theoretical and experiniesttaly in micromechanics.

The monograph is written based on the resent papdss This one is recommended to under-
graduate and graduate students of technical spesiahnd may also be useful to my dear col-

leagues, researchers, with my wishing them mangesses.
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SIMPLE PROBLEMS OF THE APPLIED THEORY OF
OSCILLATIONS

This chapter provides typical examples to the bpsablems from the theory of nonlinear vibra-
tions. We consider a pendulum described by the ataquation, Duffing oscillators possess-
ing different nonlinear elastic characteristicsg éime van der Pol generator. At the end of some
subsections, some questions may be proposed feneflection, since the state of the art in sci-
ence and technology requires from any specialisbnty good skill, knowledge in the problem
formulation, creating mathematical models and sgj\wasic differential equations, but also the

ability to obtain applied results.

Asymptotic methods

These state the basis of the mathematical andlysiscertain sense. The concept of infinitesi-
mals and infinite values are general. The tradatia@uestions, including, in particular, the series
convergence, represent key theoretical problemagymptotic analysis. Unfortunately, abso-
lutely convergent series are almost absent inhltbery of dynamical system. Let us recall stan-
dard expansions of the sine-function and the ldgariin the neighborhood of a point. In the
case of the sine, it is sufficiently to use abduee first terms from the Taylor series to access
adequate calculations up to the sixth decimal digthe case of the logarithm, one needs about
five hundred terms in order to ensure the sameracyglof calculations. Obviously, any calcula-
tor can cope with much more accurate calculatidrtbelogarithm. Though, it is natural to as-
sume that the algorithm for calculating the lodaritcannot follow directly to the formal Taylor
expansions. Otherwise, one could unnecessarilydspkkriPC resources to calculate a logarithm
value. Nonetheless, the accuracy, up to the sitadatimal sign, is not a problem for any cheap
calculator, using somewhat different algorithm. fEamsituations are quite frequent in the dy-
namics of systems, since the divergent seriesaraffymptotic methods are often caused by the

phenomenon of resonance

The concept of resonance is not a primary cateddrig requires, at least, good-quality knowl-
edge in the mathematical analysis and the theonrdihary differential equations. It should be

noted, that the understanding cannot be reducexd ftwvmal definition given, for instance, in
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“Encyclopedia Britannica”. Nonetheless, one caml figorous mathematical definitions of the

resonance in literature. These definitions serveragmatic tools in practiée

The question of divergent or conditionally convergseries, representing asymptotic solutions

to the problems of nonlinear dynamics, is usuatiivesd by separating the motion on the so-

called “slow” and “fast” patterns. The “slow” motios often caused by the resonant phenomena.
Most effective tools for studying this remarkableepomenon are the joint methods of the alge-
bra and mathematical analysis, united in the thebryroups that is used almost everywhere in

the modern physics todayThe next section provides some information reldtethe resonant

phenomenomlong basic examples in mechanical engineering.

Resonance in simplest systems

When studying the resonant phenomena in dynamysiésis by asymptotic methods, first of
all, one should define a form of the generatingisoh. First, the original set of equations gov-
erning the motion should be transformed to standguditions resolved for the first derivatives,
and then, one can solve the problem using, for el@na technique of variation of arbitrary in-
tegration constants. The meaning of these prelimisteps is the following. In the generating
solution, the integration constants are invariafitsiotiorf. In the same generating solution, the
perturbed invariants play the role of independemiables, slowly evolving in the time. Thus, we
should trace the rate of “destruction” of theseamants by the method of variation of arbitrary
constants. Usually, there are no problems to sthigeesulting differential equations describing
the evolution of these invariants. The experieraas that final differential equations usually
get a very simple mathematical structure, so that@an often obtain their analytical solufion

Before the solving, the right-hand terms of theaol®d equations are subject to a qualitative

* Zhuravlev, V.F. and Klimov, D.MApplied Methods in Theory of Oscillatiod$auka: Mos-
cow (1988) [in Russian]

® Zhuravlev, V.F.Fundamentals of Theoretical Mechanibuka: Moscow (1997) [in Russian]
® The invariants (from Lat. invarians, gen.: invatig) are physical values, algebraic expres-
sions, etc., associated with any mathematical vljed remain unchanged under certain trans-
formations of the object with respect to a grouframes of references, relatively which the ob-
ject is described.

" In this case, the original problem should notrizegrable by simple methods, or even, be such
in principle.
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analysis. Let us suppose that the averaging i®peed over the right-hand terms with respect to
time, and then the problem would reveal the “fagttiables, e.qg., the fast rotating phases, and
the “slow” motions, e.g., the slowly varying amplies. The average of any function
f(a,¢ p,w) is calculated as

2

Flo.0)=(f(a.pp0 )= (2;)2 Zfdaj f(a,0.0,0)Hg,

where some function, for example, is referred to the “slow” motion. Now, the avesag
F(,o, a)) is examined for the presence of jumps of this fieng when smoothly scanning the pa-
rameters, which are some suitable parameters opribldem. For example, in the problem of
oscillations of a simple pendulum, this parametesimgle: this is the frequency of linear oscilla-
tions . The jump, or nonzero, in averages indicate tlesgce ofesonancen the system.
This means that the perturbed solution would bditgtigely different from the generating solu-
tion. Otherwise, the motion obtains just small eotions, which may be neglected in many prac-

tical cases.

Mathematical pendulum

This is an abstract object in physics, undeniablevenient in modeling many natural phenom-
ena. A mathematical pendulum is isomorphic to ivealed physical oscillator. For example,
this is a weight suspended from a pivot in meclanidis weight can swing freely about the

pivot under the gravity.

Harmonic oscillators, occurring in a number of ared electrodynamics, physical chemistry,
engineering and other natural sciences, are equval the sense that their mathematical mod-

els are represented by the following ordinary défgial equation
X+a’sinx=0,

where a is a positive constant related to the naturaldesgy; the unknown functiom(t) de-

pends upon the timeé. For example, in the mechanics, the oscillatiegfiency is given by
w=,/g/l , wherel is the length of the suspensiog; is the acceleration of gravity(t) de-

notes the angle of deflection of the pendulum ftbmlower equilibrium position. The equation

of small oscillations of the pendulum near the Blojaium is given by

K+ w’x=0.

13



This is the equation of motion of the second ortlegrefore, the law of motion is called har-

monic oscillations of the pendulum:

x(t) = Asin(at + ¢),

and determined by two independent constants,kiyethe initial amplitudeA and the initial
phaseg .

Mathieu equation

This is an ordinary nonautonomous linear differ@rgguation of the following form [6]

d2
dx

¥+[a—2qcos(2x)]yzo, (1.1)

where a and q are parameters defining the stability propertiesabutions. In particular, this
equation is used to study tiparametric resonanc@henomenon, and quasi-linear patterns in
various applications of theoretical and experimiepkgsics, as well. The well-known example,
manifesting the parametric resonance, is a playgtawing. The height of the center of mass is
varied periodically; therefore, the moment of iresdlso follows these changes. This can lead to
increase in the amplitude of oscillations. Anotegample represents a mechanical oscillator the

pivot of which performs a periodic motion in theedition perpendicular to oscillations.

The equation (1.1) possesses well-known analysichltions, though this importance is not so
valuable. In the case of quasi-periodic coeffigamta quasilinear system, some modifications to
this equation ensure the effectiveness of asynmptoéthods, and unnecessary in the absolutely

accurate solution.

The equation (1.1) is transformed to the followstgndard set

X=Yy;, y+aw’X=uxcosit, (1.2)

® The equation, being a special case of Hill's eiguat was introduced by E. Mathieu in a con-
text of vibrations of the elliptic membrane [6]. & ktability properties are illustrated by the so-
calledIince-Strutt diagranj7]. The fundamental solutions to Eq. (1) are esped in the Mathieu
functions, i.e., special functions which repregegriodic solutions to the Mathieu equation [8,
9].
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where « is the frequency of the pendulum in the absendbeparametric excitation at the fre-
guencyQ . The small parameter of the problem is smalk<1.

Let us suppose: = ,@hen thegeneratingsolution to the set (1.2) is exactly the same a#hi®

harmonic oscillator:
X(t)= Asin(at +¢,);  y(t) = cAcodat +4,), (1.3)

where A and @, are the amplitude and phase, respectively. Thes¢ha integration constants

determined from the standard initial conditionsfirdeg the state of the system at the initial
time, i.e., x(0) and y(0).

Let the parametey is small, but finite, then Eq. (1.2) can be solwsthg the method of varia-
tions of arbitrary integration constants. The tfarms from the old variables of the problemt)

and y(t), to the new coordinated\(t) and ¢,(t), using the same representation (1.3), where the
constants of integration are formally replaced bynctions Alt) and 4,(t), ie.,

x(t) = Alt)sin(at + ¢, (t)) and y(t) = wA(t)codat + ¢, (t)), is resulted, after the substitution into the

set (1.2), in the following differential equations

A= paAcodat + @, )sin(at + @, )cosQt;
(1.4)
$, = e’ (1— cos (at + ¢1))cos§2t.

Within the first-order approximation, it is natutal interpret the value#\ and ¢, as invariants
or ordinary solutions to the generating equatidng & 0. The right-hand terms of this set (1.4)
are of the first power inu, after the applying the asymptotic procedure. &higlence of the
resonance is reduced to finding the jumps in tme{averaged right-hand terms of Eq. (1.4), by

scanning the frequencies and Q . Formally, the averaging procedure is performed:

R, = lim 1J',ua)ﬁ\cos(a)r +¢,)sin(wr + ¢, )cosQ mr;
TowT 0
i (1.5)
R =—Iim%j,uwz(l—cosz(wr+¢1))costdr.
0

2 Too

The calculated values of these integrals, provithkatl the parametera and Q satisfy the fol-

lowing  matching condition Q=2a, are such: RA:%Acosqﬁlsinqﬁl and
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R, = —%(Zcos2 ¢ —a)). For all other relations between and Q, the average value®®, and
R, . are zeroes. Consequently, the jump in the averegebserved when the followimhase

matchingconditionis satisfied:

Q=20+ b, (1.6)

where A is a small frequencgletuning introduced to study the behavior of the systerth@vi-
cinity of resonance. Consequently, the first-ordpproximation procedure, applied to the set

(1.2), reveals the single resonance. To consthachigher-order approximations, the anzats (1.3)
is modified by introducing the so-called nonresdramrectionsX  )andY ¢ ).

x(t) = Alt)sin(at + ¢, (1) + X (1) y(t) = wAt)codat + 4, (1)) + LY (1), (1.7)

Now, the motions are separated into the “fast” ‘@how” ones, when replacing the constant of
integration by the new unknown function&(t) and ¢, (t), slowly varying in the time. The role

of the nonresonant correction§,t @hdY ¢ ), is to compensate the difference between the exact
and averaged solutions, sino&(t)=(A(t))+O(xAt) and ¢,(t) = (¢, (t)) + O(uAt), where the

brackets denote the time averages. Let us introthedollowing notations:(A(t)> = B(t) and

(:(t) =a(t)

To bring the system to the autonomous form, weothice the new additional coordinate
¢2(t)= 2at , and the related equatigh, = 2w. The substitution from (1.7) into (1.2), with the

allowances for the phase matching condition (1e8)ds to the so-called truncated or evolution

differential equations governing the “slow” motions

.

paB 2 cos2a, — uA. (1.8)

B=""sin2a,: a, =
4 1 1

This system is characterized by that its right-htardhs are of the order qgf . Evidently, the

variables of the problemB and a,, should change slowly. Furthermore, the syster®) (ias

the following formal analytical solution

B(t) =c exdya)jsin(Zal (t))dt / 4}
a,t)= —arcta{ 1 {tar(%\/g +%CZ\/6}/6D,

(1.9)

w+4A
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where @ =16A°* -«”; ¢, andc, are arbitrary constants of integration determibgdhe initial

conditions to the original problem, according te tarmulae

B(0) = \/ w’x*(0)+y?(0) . a,(0)= arctarE @ ] (1.10)

w y(0)

The solution (1.9) is easily obtained by elimingtthe time parameter, and then, by simply di-
viding one equation of the system (1.8) on the mtiweapply the methods of integrating the first-

order differential equations.

The “fast” motions of the problem are naturallynegented by the functiorsnat andcosat,
and the third harmonics, as well. The equationgHerrapidly changing nonresonant corrections

would be written as it follows:

X = a’Bsin(3at +a,)/2 - o Asin(at - a,) /2 - o?Y;

. 1.11
Y =aBcodut —a,)/4+ X, (L-11)

The exact solution to this system is irrelevantawuse it would have unnecessarily inflated de-

gree of accuracy within the first-order approxiroatianalysis. It is sufficiently to express one
variable, does not matteX t (or Y (t), through the other variable. It is obvious thatlsa pro-

cedure, after dropping the terms of orderwould be resulted in the following oscillatoryueq

tion

X +a?X =ngBcos(3wt+al). (1.12)

The trivial initial conditions are natural for thegjuation. Now, it is useful to summarize some

results of the present study:

» The original problem is related to the nonautonosnsecond-order differential equation
(1.2). In the first-order approximation, the asyaijt procedure reduces the problem to
the autonomous set (1.8).

* The averages of the right-hand terms of the orlgieg which are obtained by substitut-
ing from (1.3) into (1.2), is clearly dependent nghe nonresonant correctioXst &and

Y(t): T, = /,1(— X €os= — WY sin= + X sin= —aJZYcosE)/a),
T, = —,u(— X sin= + wY cos= — wX cos= — szsinE)/ B, where= = at +¢,. Though,

these average values must be zero.
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* The set (1.8) describes the “slow” motions, du¢h® presence of the resonance in the
system (1.2). The resonance is specified by thengsiructure of the governing equations
(1.2). Therefore, the phase matching condition)(lk@he necessary condition of reso-
nance.

* The equation (1.11) describes the small nonresooamections to the basic solution
(2.3) within the first-order approximation analysisiese corrections are not relevant to
the first-order approximation, however, these aeessary to refine the higher-order ap-

proximations, following the asymptotic procedure.

For example, let us select the following specifargmeters of the problenmz =01, « =1,
Q=2, x(0)= 001, y(0)= 001, A= 001 The time history of the system (1.8) is represerin
Fig. 1.1.

2.0 |
| 0.784

0.782 4
0.780 4
0.778
0.776
B(1)
07744
0.7724
0.770

0.768

0.766

T 1 T T 1
0 30 100 150 200 L] 50 100 150 200

a T b

Fig. 1.1Amplitude envelope and phase: B(t); b —a,(t)

Obviously, a comparison between the analytical munaerical results displays that these are in-
distinguishable (Fig. 1.2). However, the analytsalution is much more informative in terms of
parametric analysis, while the numerical solutioreg just one more simulation of the process.

On this stage of the study we can formulate follayyproblems:

* How does the phase matching condit{@r6)influence upon the dynamics of the system?
* Let the phase matching condition has the followiorgn Q =« . How do the evolution

equations for the “slow” motions change?
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* Let the phase matching condition is the followin@ = me., wheren and m are non-
zero integers. What form of evolution equationstfer variablesB(t) and a,(t) would

be resulted?

- ﬂﬁvﬂmﬂﬂﬂvﬁuﬂunnﬂ]u%ﬂﬁnMMM UL
| vy UUUUUW oo
|

i

Fig. 1.2 Asymptotic solution vs. numerical integration: ok line traces the amplitude enve-
lopeB(t); solid line corresponds to exact solutions

Duffing Oscillator

The equation governing the motion of the Diiffingithator has the following forrh

X=Y,

y+(4)2X+2/,[d/:’u(f cosQt —I7X3), (113)

where x = x(t) is the sought variablez. denotes the natural frequency of the oscillatoenvthe
small parameter of the problem is zero;d stands for the coefficient of energy dissipatign;
is the nonlinearity coefficientf is the magnitude of the external periodic forceilzing at the
frequencyQ; t is the time. Letu =0, then the set (1.13) describes linear harmonitlasons.
In the absence of dissipation of enery 0, and at infinitely small oscillations, one can leeg
the nonlinearity,7 = 0 As a result, one can conclude that the lineambarc oscillator, under

the periodic forceF = f cosQt , performs finite forced oscillations at the safmequency that

® The simplest nonlinear system, first studied ley@erman engine&@eorg Diiffingin 1918.
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the external forc®. Though, when the natural frequency coincides withof the external force,
a =Q, the system experiences the resonance, exprasskd unlimited growth in the ampli-
tude. It is well known that the solution would Hevays limited in the damped forced case, at

0 % 0. After performing the change of variables
x(t) = plt)sin(at + ¢, (t):  v{t)= ap(t)codat +¢,(t)) (1.14)

Eq. (1.13) turns into the so-callsthndard formof differential equations, resolved relatively to

the first derivatives. The dynamical patterns @& flystem are studied in the vicinity of the reso-
nance «=Q. It is reasonable to introduce the new coordinatggt)=at+a, and

#,(t)=Qt +a,. On the one hand, this allows to obtain the auttmes standard form, while on

the other hand, to separate the motions into “fastf “slow” ones.

The standard form reads

80y cod2at + 2a, ) +8dap

o=-H|+np sin(4at +4a,) - 2np° sin(2at + 2a,) ;

+4f sin(2at + bt +a, +a, + D)+ 4f sin(udt -a, +a, + D)

8dcp sin(2at + 2a,)
a, = SL +370° +1p° cod4at + 4a, ) - 47p° cod2at + 2a, )
“w —4f cod2at + pbt +a, +a, + D)+ 4f co{uht - a, +a, + D)

(1.15)

Here, the detunind\ is associated with the phase matching of the syste=« + /A . This re-

lationship must be necessarily satisfied in thesg@nee of resonance.

To obtain an analytical solution, the standard f¢ini5), being completely equivalent to the
original equations, is truncated to the evolutiquaions by calculating the averages of the

right-hand terms entering there:

19When studying the forced oscillations, one usuadiglects the solution to the corresponding
homogeneous subsystems, evolving accordingly than@onic or exponential law.
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= _%[25@0 + fsin(uat—a, +a, + )]

U
a,=—F—
Y 8w

(1.16)
[— 3p° +4f coduht—a, +a, + tD)]

After the introducing the new angular varialdt) = uAt-a, +a, +®, and the “slow” time
scaler = ut, this system becomes suitable for analytical study
do o f dt,U_A_4fcos¢/—3/7,03

i o 2 ar 87 p (40

The solution to this set describes the evolutiothefamplitudep and phase/ of the Duffing

oscillator within the first-order perturbation aysik. In the absence of the external force and the
energy dissipation, the set (1.17) is essentiaihpbfied:

2
g_p:O; (:jw:A—:sS,]pz , (118)
T 4 43

and can be easily integrated:

where p, andy, are the integration constants determined fronirtiti@l conditions.

Let us analyze this solution, together with the sghmatching conditioQ =« + £A, and the

form of the substitution (1.14). We can find thevidgon of the oscillatory frequency, caused by
the nonlinearity:v = -3unp? 18« . It is obvious that if the nonlinearity coefficieis positive,

i.e., 7 >0, then the effective frequency of the Diffing ostdr, w,, = w+v, would decrease.

Otherwise, the effective frequency increases,afrtbnlinearity coefficient is negative.

Among all the solutions to the set (1.17), theistery oscillatory modes and their stability

properties are of interest. The stationary states e obtained from the algebraic system of
equations, which is resulted by equating to zetbesderivatives in the differential equations

(2.17). This set of algebraic equations is assediatith the frequency response of the Duffing
oscillator:

(64002 + 480 npZ + 9% o} +640°w* )p? =162, (1.19)
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depicted in Fig. 1.3. Each point on this curve esponds to the stationary solutions, which can
be stable or not. To investigate the stability, oae use a variety of well-known critefiawe

would consider an application of the Hurwitz criberbelow.

Fig. 1.3 Amplitude-frequency relation to the Diffing eqoatat f =1; « =1; 7 =1. Higher
the amplitude, lower the damping & 015025085

First, the so-called set of equations describinglsperturbations is prepared. After using the

following transform to the set (1.17):

lﬂ(T) - ‘/lo +€lﬂ(T); :O(T) - P +£,0(T),

where ¢ is an infinitesimal, these equations obtain threnfo

dp __290ap, + f cospp .
dr W’ '
dy - 4p0f Sinll/oll/—3/7,03,0+2,0f cogy,
dr Aaf p? '

(1.20)

1 Goryachenko, V.D., Prigorovsky, A.L. and SandaM!. Problems in the theory of oscilla-
tions, stability of motion and the qualitative tingof differential equationsTextbook. 2nd ed.,
Nizhny Novgorod: Publishing House of the Nizhny Igovod State University (2007) [in Rus-
sian]
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The linear differential equations (1.20) describhe tlynamics of the system (1.17) in a small
neighborhood of stationary regimes. If these sohgiwill increase without limit, the steady state
motion will be unstable. To solve the problem afslity, it is sufficient to use solutions to the
eigenvalue problem. If the real parts of the eigdmes will be negative, then we can talk about
the stabile motion, otherwise, the stationary regginvould be unstable. One of the universal
tools to solve the problem of stability is the Humacriterion, well-known from the course of
algebra and geometry. There are some concrete fstepalculating the criterion Hurwitz. First,

the characteristic polynomial of the system (1i2@repared as it follows:

P(1) =1 - f sing, - 2dup, 1+ 2f cos @, + 305 cosy, — 4p,wsing, |
247 p, 8w’ g

Then, accordingly to a paradigm of practical aggilans of the Hurwitz criterion, we introduce
the following notation for the coefficients of thelynomial:
_20up, - fsing, _ 2fcosy, +3Ip; cosy, — 4p,wsing,

=1; = ;
gO gl 20)2100 gz 80)4,05

: 9329429520,
and write out the following determinants:

' T,=10; 9, 0,

95 9, O

O: 0O,

9, 9 O
T2={gl go} ' °

For consistency, we introduce the final determisaimt =g,, T, =g, . If all four values ofT,,

T,, T, and T, would be positive, then the stationary regimeejgorted as stable. Although, if, at

least, one of these numbers will be negative oraggihes zero, then the motion is considered to

be unstable.
Now, the information received is sufficient to fartate the following questions:

* Assume that in the Diffing equation is subjecthi following transform of variables,
x(t) = p(t)sin(ct + ¢, (1)) + X (t);  y(t) = ap(t)codat + &, (1) + ¥ (t). What form of
equations for the “nonresonant” correction; (t) and Y(t), will be?

* Would the stationary oscillations be stable for Diéffing oscillator, using the Hurwitz

criterion?
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Oscillator with quadratic nonlinearity

The equations of motion of this oscillator are fibllowing

X=Y,

1.21
Y+ WX+ 2,ud/:,u(f coth—nxz), (1.21)

wherein all the symbols are exactly the same #sartase of the classical Duffing oscillator.

Let 4 =0, then the system (1.21), as before, describestt®n of a linear harmonic oscillator.
If 4#0, and the energy dissipation presendss 0, but there is no external periodic force,

f =0, then one obtains a nonlinear oscillator with #sgmmetric restoring force. Solution to

this system is sought in the form

x(t) = Alt)sin(ct) + B(t)codat) + ux, t);

y(t) = awA(t)codat) - aB(t)sin(et ) + 14y, (t), (1.22)

where y, (t) = x,(t). After the substitution from (1.22) into the stZ1), we determine the evo-
lution equations in terms of new unknown functioA), B(t) and x,(t), y,(t). It is obvious
that since the order of the original system is tiéh@n the variablexl(t), which represents a
small nonresonant additive correction should blesiihto the two remaining unknowr{t) and

B(t), representing the slowly varying amplitudes.

It is remarkable, although the system (1.21) exgpexes the resonance, nonetheless, this one
cannot be detected within the first-order approxiamaanalysis as it has be done in the previous
examples. After the reduction of the original sethe standard form and the averaging proce-

dure, one can obtain the following very simple eunes:

A=-udA. B=-udB. (1.23)

The equation for the nonresonant correction reads

2 2 2 _ A2
X, + WX, :/7'7(B tA )+’7(B > A )c052a1 +nABsin2at . (1.24)

2

When solving the last equation (1.24), we shouidemmber that the accuracy of the asymptotic
procedure is of ordep, accordingly to the expression (1.22). Therefarbecomes evident that

within the first-order nonlinear approximation, therrection xl(t) can not depend explicitly

upon the small parameter. Thus, the solution to Eq. (1.24) is also veryden
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x, =—L_[3(B2 + A?)+ (A% - B2)coq2at) - 2ABsin(2at)]
where the amplitude\(t) and B(t) are considered as constants, accordingly to theio to
Eq. (1.23), whenu =0. Consequently, in the first-order nonlinear appration, the solution to
the set (1.21) is almost indistinguishable from lihear solution, asu = OThis case requires
applying the tools of the second-order nonlinegraximation analysis, to have some nontrivial
result. Now the solution of the system is modifigth the allowances for the above information:
x(t) = Asinat + B(t)cosat +
+ ,U# [3(82 + A%)+ (A% - B)cos2at - 2ABsin2ca]+ 1%, (b))
1.25
y(t) = awAcosat — aBsinat + (1.25)

+ /J%)[— (A2 - B?)sin2at - 2ABcos2at]+ 12y, 1)

where vy, (t)= x,(t). After substituting the expression (1.25) into #e (1.21) once again, one
can obtain the evolution equations for the new emkmfunctions At), B(t) and x,(t). Obvi-
ously, the variable, responsible for the secondomonresonant additive correctian(t),
should also be linked with the slowly varying arydlies A(t) and Bt).

In the second-order nonlinear approximation, tlsemance in the system (1.21) is already pre-

sent. The nontrivial evolution equations are tHe¥ang

5
12¢)°

A= —uon+— 17B(A% + B?)
(1.26)
B=-u®B —%MA(AZ +B?)

These equations, in the absence of the energydissn, 0 =0, can be easily resolved:

12w

Al) = Ao)si] 2 (w(0)+ BZ(o))[} (1) = B(O)co{ S” (a2(0)+ BZ(o))[}

where A(0) and B(0) are the initial values of amplitudes. Obvioushattin vacuq J =0, the

corresponding solution would be very primitive. Andw, an answer on the question how does
the quadratic nonlinearity effect on the dynamitte nonlinear oscillator is ready. This type of

nonlinearity, as in the case of the classic Duffosgillator, causes the frequency deviation of
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order 4%, within the second-order approximation procediitds effect is very weak, but has a

significant impact on the evolution of dynamic yss.

Van der Pol generator

Van der Pol generator is an important special cagbe Liénard equation [10], describing the
motion of simplest nonlinear oscillatory systéfmsn particular, the following second-order or-
dinary nonlinear differential equation is a math&oa model of self-excited electric oscilla-

tions:

X=Y, y+w'x= ,u(x2 - J)y, (1.27)
where x = x(t) is the dependent variable; is the natural frequency of the oscillator whea th
small parameter of the problem is zero; 0 is non-negative rate of energy dissipatibnge-

notes the time. Lep =0, then the set (1.27) describes the oscillations simple harmonic os-

cillator, therefore, its solution for smadl, can be found in the form:
X(t) = Alr)sin(ct + 4(z)) + uX (t); y(t) = wAr)codat + 4(r)) + X t) . (1.28)

where X(t) Is a small nonresonant correction. The substiufiiom (1.28) into Eq. (1.27) leads

to the following evolution equations describing thlew” motion:

9A) - 2 (o)} ) =0 (1.29)

where the differentiation is carried out with resip the “slow” timer = ut. This set of equa-

tions (1.29) has an analytic solution:

12 Balthasar van der Pol (1889 — 1959) was a Dutglsipist. and mathematician. He was born
in Utrecht. He graduated from the University ofédtnt (1916), then studied with John Ambrose
Fleming and Sir J.J. Thomson, the Cavendish LaBaambridge University (1916 — 1919). In
1922 — 1949 he headed the research in electribaldtory in Eindhoven. Basic mathematical
works relate to the theory of oscillations. In 198 famous equation, describing the oscilla-
tions in vacuum-tube oscillator, was born. The rodtbf slowly varying coefficients to solve
this equation had been also suggested, which daxtarsthe development of the modern theory
of nonlinear oscillations.

26



\/ - (x0 +wW’y? —450.)2)exp(— Jr)j

— Xo F wzyg . — X,

AT) =2 - ( + a2~ dout Jexd-or) #(r)= arctarE " j (1.30)
X, + &’ Yq

The integration constants are determined from rtit&al conditions of the original problem, ac-

cordingly to the following formulae:

A0) NCARSTE ¢(o):arctarEﬂ}

 w Yo

where y, = y(0) and x, = x(0). The equation for the nonresonant correctiotlt) is the fol-

lowing

b X = A~ 45+ A2 - 4aon +8(5 - A%)cos (ut + g) +8A? cos’ (ut +¢)).

8cost + @)

Let our attention be drawn to the fact that thé émgiation evolves in the physical time scile
but not in the “slow” timer . Assuming that the times and 7 are independent, it is a fairly

simple to obtain analytical expression for the 8ohuto this equation:

(cos2¢ +1)(5- ’Z] incod2at + 29)+1)
2 cos@t + @) +
A? cosRat + 2¢) cosit + @)(cos2g +1)
8

_ A cos2p+1Y o A® _A’cos’2¢
X(0)= 2(cos2¢ +1) ( 2 j(a 4 ]In(cosw +1) 8

(cos2gsin2gsing +1/ 2)c052¢} +

A2
TCOS(&I ¥ ¢){— osin2¢ cosgsing

(5+@)sin(ax + ¢)sin2¢ cos’ 26,

Obviously, the valuesA and ¢, describing the “slow” motions, are the functiaighe “slow”

time 7. They vary accordingly to the expressions (1.8@yerned by the equations of motion

(1.29). For a visualization, the following specifimrameters of the problem are selected:
u=01, «=1, 0o0=1, x,=01, y,=001 The time history of the solution

x(t) = Alt)sin(at + #(t)) + 12X (t) is shown in Fig. 1.4. Here the time evolution loé mmplitude
27



A(t) and phase;)(t) is described by the expressions (1.30) and threutar for the small additive

term X(t). Figure 1.4 shows the numerical solution to thgioal problem (1.27) with the same

data, as in the case of the asymptotic solutiopaigntly, these plots almost coincide. This indi-

cates a good quality of the asymptotic approxinmatio
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Fig. 1.4 Time history (dotted line — analytical solutiohtloe first-order approximation; solid
line — direct numerical integration)

Nonlinear waves in a thin infinitely long bar

We concern with the essentials of nonlinear wawp@rties in typical mechanical systems such
as an infinite straight bar and a circular ringslfound that the triple-wave resonance can be ex-
perienced in systems with continuous and discyggetsa. The circular ring is studied in detail in

the context of the solid state wave gyro in théhfichapter. Much more complicated cascade
wave processes and the stability properties of leoumodes with respect to small perturbations

are discussed in the seventh chapter.

We consider mechanical vibrations of a thin bafqrering plane oscillations along the longitu-
dinal and transverse directions. The elongatioa ségment in the bary, and the curvature of
the median lineK , in the vicinity of the pointx at the timet can be expressed as it follows:
A=@+U, P +W2 -1  and K =(arctarfW, /(1+U,)), , where U =U(X,T) and

W :W(X,T) are the longitudinal and transverse displacemeesgpectively. Then the Lagran-

gian density of the system in the harmonic apprexiom takes the form
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L :'O_A(UT2 +WT2)_E_A/\2 _EKZ,
2 2 2

where p is the mass densityA denotes the cross section ar&a;is the Young modulus]

stands for moment of inertia of the cross sectiom dimensionless notation, this Lagrange den-

sity function reads

| = (U2 + w2 - % -ak?) 12 (1.31)

The related algebra is not cumbersome, though igeamIt can be found in lengthy original re-
ports. We just emphasize here on the mechanicaecpences of the analysis. The relevant di-

mensionless equations are the following [11]:

U~y = W2 ) 12wy +atw, = p(uw,), (1.32)

where a is the dimensionless radius of inertia of the arjs a small parameter arising from

asymptotic considerations. Equations (1.32) arabéished under the working hypotheses of
Bernoulli and Euler. Only second-order couplingswaen the longitudinal mode and the
bending modew are kept. The linear analysis of Eq. (1.32) yidtiaightforwardly the disper-

sion relation for the longitudinal waves propaggtivithout dispersion:

@ =k, (1.33)

and that for the highly dispersive bending waves:

w, = tak’, (1.34)
wherea andk denote the natural frequencies and wave numlesgectively.

The spectra are sketched in Fig. 1.5. Now, we densihe possible coupling between three
waves selected at working points in this figuraitypical parallelogram form such that we sat-

isfy the so-called three-wave phase matching comdit

w=w+w+Aw K, =k +k, +Ak. (1.35)

That is, we consider the energy exchange betwédamge-amplitude high-frequency longitudinal
wave coupled to two low-frequency bending wave yredtions propagating in opposite direc-

tions. These three waves create a resonant trizeln®@nlinear resonant coupling between these
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modes is how examined on the basis of the averageahgian in the first-order approximation
analysis inu . Coupled solutions are sought in the form

Tn‘.t, —irad

ot &4 s

Fig. 1.5Triple-wave phase matching between high-frequémegitudinal and a pair of low-
frequency bending waves in a bar. The bending dispebranch is traced by the dashed line,
while the boxes correspond to the waves of thd tria

u(x,t)= A,(x,7)expig +cc:;

w(xt)=A(x.7)expig + A(x.7)expig + cc; (1.36)

where y = ux, 7 =t (u<<1); A, are the slowly varying complex amplitudeg,; = w,t — k x
are the phases. Each coupts, (k,) satisfies to the correspondingly numbered dispersela-

tion, and altogether the phase matching condit{@r35). The symbot.c. denotes the complex

conjugate.

On substituting from the anzats (1.36) into therhagian (1.31), and averaging the result over
both the space and the time scales, we obtain af $ktee coupled hyperbolic-type partial dif-
ferential equations for the complex amplitudes:

oA, ,, 9A _ oV (1.37)
or "oy w, 0A '

Here, v, = dQn(k)/dk|k:k are the group velocities of these three moges;—akkk, /2 is the
nonlinearity coefficient, whileU = A A A, expi(Aat — Akx)+ AA, A, expi(-Aat +Akx) is the
average potential. The Cauchy problem associatddBy. (1.37) requires the initial conditions:
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A (x0)=2a,(x) (n=f%). Let us denote the energy and the energy fluwocasted with each

linear mode, as it follows:

E,=«?|A| S, =V,E, (1.38)
We can establish several consequences of Eq. (@r8i7j1.38) such as the equation

2 (E+E+E )+ (S +5,+8)=0 (1.39)

or ox
It is clear that the following conservation alsddhtyue:

61(5 _Ej +ai(i —ij =0

T
o @ X\a W (1.40)

1(55}1(3&}0,
or\w w) oxyla

In the case of spatially uniform processes, dioectsequences of these divergent laws are the
well-known Manley-Rowe relations (first integral$ Bq. (1.39) and (1.40) characterizing the

energy partition between modes):

E E = constant; & +E = constant (1.41)
W W o W
The total mechanical energy is conservétl=E, +E, +E, = constaritile the evolution

equations (1.37) are reduced to the following ones

=P Y (1.42)

@, OA,’

These are identical to the Euler equations of madfio a rigid body about a fixed point (for real-
valued variables [12]). At the degree of approxioratcf. (1.36)), in the present approach, we

have the following easily established results comog the stability of modes:

* Longitudinal waves are unstable with respect tolshoa-frequency perturbations (so-
called break-up instability).

* Bending waves are stable, at least, within theguieirst-order nonlinear approximation,
with respect to small high-frequency perturbations.

* The loss of stability against the high-frequencye&vaan lead to a dynamic stress growth
caused by the resonant excitation of two low-fremqyevaves.
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As a consequence, one may pay special attentithretimitial stress level, for example, one may
envisage a restriction on it so as to stay in thstie regime. Finally, one may inquire about the
temporal evolution of the considered triad. Thiguiees exploiting a technique such as the in-
verse scattering method in the general case [13h 6nd out much simpler analytical expres-

sions, in terms of Jacobi elliptic functions.

Exploring the Lie series

We consider the problem of two coupled oscillatditse expressions for the kinetic and potential

energy are follows

2 2 2
M= G + Cz(xz — Xl) + CsXs

1 1
K==mx*+=m,x?;
R 2 2 2

Using the Euler-Lagrange method, with the help bagranL =K -1, we can obtain the equa-
tions of motion, and then derive the characteristjoation for the eigenvalues and eigenvectors

of the problem. This equation, represented in goliaih form

A4mm2 + ((rrh + m2 )CZ + ClmZ + CS”H)/‘Z + (Cl + CS)CZ + C1C3 = O' (143)

is biquadratic, and therefore, it is easy to sofg analytically. Let us suppose that the paramet-
ric dependencel(m,) is of interest. How do the eigenvalues of the fmwbchange with the

variation of the mass, number one? For equatiofBjihis problem is easily solved: one needs

to define explicitly the expression fot. For example, one of the four roots to the equatio
(1.31) at the given parametersm,=1; ¢ =1 (I =f%) can be expressed as

A :\/ml(1+ml—1/1—ml+m21)/ml.

Let us suppose that the equation (1.31) is tramsreal, and then the analytic solution to the

problem would not so obvious. Here we trace a teglnbuilding a solution in the form of the
so-called formal series Lie, regardless of the foifnthe implicit function. This one still should

be enough differentiable.

Equation (1.31) can be rewritten in the forﬁ)()l,ml)EO. The parameterization relates to the

variablesA :)l(/,l) andm, = ml(/,l), using the argument . Now one can write the Hamiltonian

equations

A, :—D”(A’ml), (1.44)

A M,
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where the subscript denotes differentiation witkpeet to the parameter. If the original data
of the problem are known, for exampley, =1 (j :1_2), c =1 (i :l_3), then the Eq. (1.44)

can put the Cauchy problem with the initial corahs. Let these conditions would be:

A0)=1 m0)=1. (1.45)

In other words, we study the evolution of one adtsoto the original equation depending on the
parameteru . The Cauchy problem (1.44), (1.45) can be easilyesl numerically.

If the parameteru varies in a small neighborhood of zero only, titeis easy to get a formal

analytical solution in the form of the Lie serié®r this purpose, by virtue of Eq. (1.44), it is

compiled a pair of functions
Am)=m,; n(Am)=4,. (1.46)

A parameterization over the variable in the expressions (1.46) is insignificant, sitite set

(1.32) is autonomous. Now the following differehtiperator is defined

0

- (1.47)

G=¢(hm)2+n(im)

which is called the generator of the group.

Formal Lie series for an arbitrary function of twariables is constructed using the following

rule:
F(r.m)= F(/},ml)+,uGF(/1,ml)+’u7'szF(/],ml)+..., (1.48)

where F(A,m) is the value of the function when its arguments determined by the initial
conditions (1.45), for example1(0) =1, m, (0) =1. Here F(}',m;) is the value of the same
function at the explicit dependence upon the smpaltameter 1. In the particular case
F()l,ml):)l , We obtain a formal series, describing small \temes of the eigenvalue upon the
variable x4 . Similarly, a particular relationshiﬁ()l,ml): m, describes the mass as a function of

L . With regard to the problem of the Lie series dbstg the variation of mass, one can obtain:

m, =1—,LI+2,L12—6,L13+26,u4—%98/15+... (1.49)
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The result for the eigenvalue is obtained in alginmanner:

A =1+4u-64° +281° -151u° +%32/,15 +... (1.50)

Obviously, the specific cases of the Lie seriegq)land (1.50) are sign-alternating conditionally

convergent, or even divergent, series. Howevey, ¢five a good approximation for small values

of the parameter of group (Fig. 1.6).
Alu) m, (1)

1.00

0.9% 1

0.96 1

0.94 1

0.92 H

A My 144

0.90 1

.88 1

.86 4

0.84

T T T T 1 T T T T 1
0 0.05 010 015 0.20 023 0 0.035 010 013 0.20 0.25
i a H b

Fig. 1.6 Approximation by the Lie series: a — eigenvalue; mass. Thin lines show the Lie par-
tial sums. Thick lines correspond to exact anadytsolution
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SOMMERFELD EFFECT

We analyze a classical problem of oscillationsiagisn an elastic base caused by rotor vibra-
tions of an asynchronous driver near the criticegudar velocity. The nonlinear coupling be-
tween oscillations of the elastic base and rothedgplace naturally due to unbalanced masses.
This provides typical frequency—amplitude pattee&n let the elastic properties of the base be
linear one. As the measure of energy dissipatianeases, the effect of bifurcated oscillations
can disappear. The latter circumstance indicatesetiiciency of using vibration absorbers to
stabilize the dynamics of the electromechanicatesys The fourth chapter of this monograph
presents results of theoretical studies inspiredhleyproblem of reducing the noise and vibra-
tions by using hydraulic absorbers as dampersdsifte the energy of oscillations in railway
electric equipments. The results of experimenialstrover this problem and some theoretical
calculations, discussed in the text, are demomrstridie ability to customize the damping proper-
ties of hydraulic absorbers to save an electricggoand to protect the equipment itself due to

utilizing the synchronous modes of rotation of totrs.

The phenomenon of bifurcated oscillations of astedebase, while scanning the angular veloc-
ity of an asynchronous driver, is referred to thedlxaknown Sommerfeld effect [14—19]. Nowa-
days, this plays the role of one of classical repnéative examples of unstable oscillations in
electromechanical systems, even being the subjesttident laboratory work in many mechani-
cal faculties. This effect is manifested in thet fdmat the descending branch of resonant curve
cannot be experienced in practice. A physical pregation is quite simple. A driver of limited
power cannot maintain given amplitude of stationaityrations of the elastic base. Detailed
measurements can reveal that the oscillation freguef the base is always somewhat higher
than that predicted by the linear theory. This iegphk very reasonable physical argument. With
an increase in base vibrations, for example, tlengéric nonlinearity of the elastic base should
brightly manifest itself, so that this assuredlyyniead to the so-called phenomenon of “pulling”,
or even, chaotic oscillations [20-22]. However, arendetailed mathematical study can demon-
strate that the dynamic phenomena associated atsommerfeld effect are of more subtle na-
ture. If one interprets this effect as a typicalecaf resonance in nonlinear systems [23-25], then
one should come to a very transparent conclusitve. dppearance of the amplitude-versus-
frequency response characteristic naturally en@vadtin nonlinear systems, say, when regard-
ing the Duffing-type equations, does not necesshale place due to the geometric nonlinearity
of the elastic base. This dependence appearsemith of nonlinear resonant coupling between

oscillations of the elastic base and rotor vibragioeven when the elastic properties are abso-
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lutely linear. The latter circumstance attractgacpcal interest in such a remarkable phenome-
non, as the effect of Sommerfeld, which is focusethe present study. Namely, some recent
numerical simulations [26] lead to idea of effiagrof utilizing vibration absorbers to stabilize

the motion of electromechanical systems. The fiesition of the present study drafts a simple

analytical approach to the same problem.

Equations of motion

The equations governing a rotor rolling on an &dstse read [15-18]

mij + p +2q7) - myr, (@, sing, + ¢Z cosp, )= 0;

2.1
3+ H,(p,.8.) - L,(8,.6,)- mrsising, =0, (1)

wherem is the mass of a base with one degree of freedbaracterized by the linear displace-
ments; p is the elasticity coefficient of the basg;is the damping coefficientn, stands for

the mass of an eccentric; denotes the radius of inertia of this eccentdg;is the moment of
inertia of the rotor in the absence of imbalanlde;(¢l,¢l) is the driving momentL1(¢l,¢l) de-
scribes the torque resistance of the rotor. Thgleidevice (unbalanced rotor) set on the plat-
form, while the rotation axis is perpendicular he tirection of oscillatiom . The angle of rota-
tion ¢, of the rotor is measured counter-clockwise. Asstimé the moment characteristics and
the driver drag torque are modeled by the simptections: H, =M, —k¢, and L, =k,,¢, ,
where M, is the starting pointk; is the coefficient characterizing the angular egjoof the ro-
tor, i.e., M, /k;; k,, is the resistance coefficient. Then the equatadmaotion are rewritten as

mij + pry + 2077 -y, (@, sing, + #? cosp, )= 0,

. L (2.2)
.+ (klO + k1)¢1 —M, -myr/jsing, =0.
After introducing the dimensionless variables, basic equations hold true:
%+ X+ 240 - (@, sing, + 92 cosp, )= 0 23)

¢ +a,p—b - pcXsing, =0,

where ¢ = m /m<<1is the small parameteg, = (k,, +k, )/ J,a, b, =M,/ J,af, ¢, =mr,/J,.
Here, &), =/ p/ m stands for the oscillation frequency of the basds the new dimensionless
linear coordinate measured in fractions of theusdif inertia of the eccentrid =r,aw,q/m, is

the dimensionless coefficient of energy dissipator wyt is the new dimensionless time.
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The set (2.3) is now normalized at the linear pagiroaching a standard form. First, the equa-

tions can be written as a system of four first-omfguations

X=Yy,
Z:__C:__ 2.0y + y(@sin¢1+wf005¢1)i (2.4)

@ =-a,¢ +b, + L ysing,.

Then we introduce the polar coordinates; psing and y = pcosa . So that the equations get

the following form

o= ,u(c'al sing, +af cos¢l)cosa -2/dpcog a;

a =1+ 2,udsin2a—,u(d)sin¢1+wfcos¢1)sina/p;
¢ = w;

@) =-a,w +b+ e (pcosa - pasina)sing,.

(2.5)

Now the set (2.5) experiences the transform onatigular variableg, =@ - /a,. Then the

eqguations obtain the form close to a standard form

p =t sin(g - w/a,)+ of codg - w /a, )| cosa - 24dpcos a
a=1+2udsin’a - ,u[c;)l sin(g -« /a,)+af codg - a)l/al)]sina/p;
@ =Q, + i (pcosa - pasina)sin(g - w/a, )/ a;

@ =-aw +h + ,LICl(,OCOSO’ - ,oc'rsina)sin(qq - wl/al)'

(2.6)

Here Q, =b,/a, denotes the partial angular velocity of the rofbine system of Eq. (2.6) is

completely equivalent to the original equationsisinot a standard form, resolved for the first
derivatives [24], but such form is most suitabletfee qualitative study of stationary regimes of

motion, due to the explicit presence of generalizgdcities in the right-hand side terms.

Resonance

We study the resonance phenomenon in the dynasyséém (2.6). Letu = Qthen Eq. (2.6)
are reduced to the following seri= , @ =1, ¢ =Q,, & =-a,w, +b,, which has a simple so-

lution

p(0)
a(O)
9(0)+Q,r;

= Q,(1-expl-a7))+ wl0)expl- ar)

+7;
2.7)

Yo,
a
a
2]
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where 0(0), a(0), g(0), «(0) are the integration constants. Now the solutiaff)(® substi-
tuted into the right-hand terms of Eqg. (2.6). There discards all the terms in orde2 and

higher, as well, to perform the averaging overpkeod of fast rotating phases. In the problem

(2.6), the fast variables are the angtds) and ¢(r), accordingly,o(r) and () are the slow

variables. The average of an arbitrary functiocaigulated as

2 2
1

Flo.w)=(f(a.q.0.@)) = o [da [ f(a.q.0.0),.

0

Now the averagé:(p,a)l) Is examined for the presence of jumps along a #immctange of sys-
tem parameters. One of which represents the parigular velocityQ,. It is easy to see that the

jump of the average takes place at the valye- 1.
Evolution equations

In the case when the system is far from resonaim:e,|Ql—]j >> 1, EqQ. (2.6) can easily be

solved using the Poincaré perturbation method egpb the small nonresonant terms in ogder
However, in the resonant case,|@§—1~0, the first-order nonlinear approximation solution
should contain the so-called secular terms appgatire to the known problems of small de-

nominators. To overcome such a problem, one usdakys the following trick. As soon as the
quantitiesa(r) and q(r) are changing rapidly, with approximately the saate, it is natural to

introduce a new generalized slow phase(r)=a(r)-g(r)+(Q, +w,(r))/a,, where
ml(r) = a)l(r)— Q, is a small variation of the angular velocity. Thadter the averaging over the
fast variablen, one obtains the equations for the slow variabidg, which are free of secularity.
Such equations are called the evolution equatiorisuncated ones. In the case of the set (2.6),

the truncated equations hold true:

p = ul(©Q, +@,) cosd - e, sind) 12~ 24dp;
d=A-w, - ,u((Q1 +@,)’ sin® +a@, cosd))/Zp; (2.8)
@, = —awm, — 1c,(pcosd + psin®d) /2,

where A=1-Q, is the small frequency detuning),(r) is the new generalized phase. Note that

for the problem of averaging over the fast variablenough to writet =1.
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Stationary oscillations in the absence of energy shipation

Now the usual condition of a steady motion, i@5 ® =a, = , isapplied. We are looking now

for the stationary oscillatory regim@s vacuq i.e., d =0. The solution corresponding to these

regimes reads

cosd =0 (sin® = 1)

a, =0
o= Q]
A 21-Q,)

This solution describes a typical resonant cuna tiee pointQ, =1. The next stage of the

study is to test the stability properties of sta#iry solutions. To solve this problem, one should
obtain the equations in perturbations. The proceflurderiving these equations is that, firstly,

one performs the following change of variables

cosP - FO (sind - 1),
w, - W
P~ Pt p,

where p, = u(A-1)/2A is the amplitude of steady-state oscillationsntiaéter replacing the

variables, the perturbation equations get the Walg form
p=-2(aio+m)
2
Cb = —[1+ ijl + E[gj p’
o 2\ P,
w, = -am, _%(pocb + :0)
To solve the stability problem evoking the Lyapunmterion, we formulate the eigenvalue
problem defined by the following cubic polynomiahplicitly presented by determinant of the

third order

2 Ps
f A —ﬂ =0
2 2
HC, HC,
~-1 —/1 _A_
5 BPo 5 a:l.
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Now we can apply one of the most widely known cidiefor example, the Hurwitz criterion, for

the study the stability properties in the spacesysftem parameters. The result is that the de-
scending branch of the resonant curve, wkr»1, cannot be practically observed because of

the volatility associated with the fact that thesdr is of limited power. This cannot maintain the
given stationary oscillation of the elastic basarrtbe resonance. This result corresponds to the

well-known paradigm associated with the so-callethBerfeld effect.

Formally, there are stable stationary regimesQag 2. However, this range of angular veloci-

ties is far beyond the accuracy of the first-ong@nlinear approximation.

Damped stationary oscillations

A small surprise is that the response of the aedeatichanical system (2.2) has a significant
change in the presence of even very small eneggipdition. Depending on the parameters of
the set (2.2), the small damping can lead to tygigateretic oscillatory patterns when scanning
the detuning parametex. Though, let the dissipation be sufficiently largeen very simple sta-

ble steady-state motions, inherent in almost lisgatems, hold true also.

From the stationary condition, one looks for tregiehary oscillation regimep,, @,, and @,

asd # 0. The equations corresponding to these regimethar®llowing ones

_ (:I-_A+w10)2 cosP,,

Po = 2d .
—_— 2 i
A—LU10='U(1 A+ @) SIrchO; (2.9)
2,
@y, = HCP, COSP,
2a

For a small damping, the solution to these equatiescribes a typical nonunique dependence
between the frequency and amplitude, i,ag.(A), defined parametrically through the phabg.

Near the resonanceQ, =1 (A =0), at some given specific parameters of the probleay

4 =01, d= 003, a=1andc = 1 the sketch of this curve is shown in Fig. 2.1.
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Fig. 2.1 The frequency-amplitude dependerm)e(A) near the resonand®, =1 (arbitrary
units)

To study the stability problem of stationary sadas to the perturbed equations, we should for-

mulate the eigenvalue problem. This leads to tHeviing characteristic cubic polynomial

p(A)= g2 + g A + 9,4 + g,

with the following coefficients
9o =1,

_ H{1-D+@, )(uep, sind, +1-A+@, )cosd, +2p,(a, + )
Po\L- 1P, sin* ® /4)

9

—,u(/,zt:l,oO sin®, +2c,02 + A1-A +w10)2)(w10 ~A) cog ®, /8

+ 0, (/fpodc:l sin®, +(1-A+a@,, ) (a + ,ud))cosqb0 /2

—,oocl(,uz(slz—wlo +A)1-A+@m,, ) —2,05)sinCD0 4+

,u(cl,og(A—3—LU0)+,U(1—A+LUO)3)(1—A+w0)/4+ 2a,dp?
2 p2(1- e, sin? ©, /4)
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/JCZOO (1-A+aw@,, ) cos @, —6;1(1—A +w10)((1— A+a@,) 8 + Zﬂcldpg)C0§ D,

N

w2+ p,1-n+a, ) (c sind, /2+ad)cosd, + cdodsind, +
-2+ @, )1- 2+ @) a+ 2ucdp?) 12

9= 2p2(1- pPc,sin? , /4]

It should be noted that the characteristic polyradrooefficients are calculated with a somewhat
inflated for the first-order approximation accurabtryfact, it is easy to prove by series expansion
in the small parameter:. However, the coefficients in the truncated forra auch that again
lead to a transcendental equation. Therefore, ththematical significance of such asymptotics
is small enough. Now one traces the stability priogge by finding the areas of system parame-
ters when applying the Routh-Hurwitz criterion, wahnistates the necessary and sufficient condi-
tions of positivity of the following number3, =g,, T,=9;,, T, =0,0; ~9,9,, T; =T,0;.
These conditions are violated along the amplitudgifency curve when scanning the parameter
between the point& andC. The characteristic pointd andB originate from the traditional

condition that the derivative of function approazi@inity. The pointC appears due to the mul-
tiple and zero valued roots of the characteristjaagion p(/1)=0, as the determinants in the

Routh-Hurwitz criterion approach zero, more pregis€, =0 (Fig. 2.2).

| p— . . —
0.8 -6 -1).4 -0.2 0 0.2 04 0.6

-4+

Fig. 2.2 The second determinant of the Routh-Hurwitz doteversus detuningf, (A)
(#=01,d=003, a =1, andc, =1)
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At the direct scanning of the parametertogether with increase in the angular velocitytra
driver, one can observe a “tightening” of oscitba up to the poinA. Then, the upper branch
of the resonant curve becomes unstable and thergtat oscillations jump at the lower stable
branch. At the reverse scan the angular velocitthefdriver at the poinE, in turn, there is a
loss of stability of stationary oscillations at tlesver branch and the jumping to stable oscilla-
tions with the greater amplitude at the upper bnasfcthe resonance curve. The pditappar-

ently, is physically unrealizable mode of oscilbais.

However, with the growth of the dissipation, thetability zone shrinks. Then the amplitude—
frequency curve becomes unambiguous, and the ilistatone is completely degenerated. In

this case, the Sommerfeld effect also disappears.

Resume

Near the resonance, the rotor is substantialljuarfted by the pair of forces acting from the
damped vibrating base. The average value of thisvend is a positive defined value propor-
tional to the amplitude of vibrations of the baskerefore, near the resonance, some increase in
the angular velocity of the driver is experiengaayvided the damping is sufficiently small. This
leads to the phenomenon of “pulling” hesitationsplte the fact that the elastic properties of the
base are linear. Nonetheless, together with thethrof dissipation, the zone of the Sommerfeld
instability narrows down to its complete disappeaea This leads to the idea of efficiency of

utilizing vibration absorbers to stabilize the nootiof electromechanical systems [26].
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SYNCHRONIZATION

The phenomenon of the phase synchronization hauybest physically described by Huygens
and was intensively studied mathematically onlgsithe mid twentieth century, in parallel with
significant advances in electronics [27-29]. Fundatal results on the synchronization in terms
of the qualitative theory of differential equatiossd bifurcation theory prove the resonance na-
ture of this phenomenon [23, 30, 31]. Now, the eagilon of this theory is widely used to solve
pressing practical problems in a wide range ofvdgtirom microelectronics to power supply
[18, 32—-35]. Now the research interest in advarfeg#ds of the synchronization theory is con-
centrated, apparently due to the rapid developroémntew technologies, on studying complex
systems with chaotic dynamics, discrete objectssystems with time delay variables. However,
in the traditional areas of human activity suchfasjnstance, energy and transport, there is also
noticeable growth of attention in this phenomenocuged on the searching effective ways to
save the energy and integrity of power units. R¥sgive developments in the scientific re-
searches are constantly improving and expandiryiirunderstanding over the synchronization
phenomenon, as a consistent coherent dynamic gro¢éss one occurs usually due to very
small, almost imperceptible bonds between the iddal elements of the system, which, never-

theless, cause a qualitative change in the dynaimétevior of the object.

The basic equation of the theory of phase synchation of a pair of oscillators or rotators
reads:d¥/dT =0 +QsinW, whered is a small frequency (or angular velocity) detgni@ is

the depth of the phase modulatidn,is temporal scale. This one being a very simpleagqgn

has the general solution in the following form

W(T)= 2arctar{%_(tar(£\/52 -Q? +%\/52 -Q? }/52 -Q’ —QD

where C is an arbitrary constant of integration. From to¢ution follows a simple stability cri-
terion for the stable phase synchronizatidrd:—-Q* < . ItOshows that the phase mismath

must be small or, accordingly, the parameter of uetttbn Q must be sufficiently large, other-

wise the synchronization may be destroyed.

A more detailed mathematical study of this problesfierred to a two-rotor system based on an
elastic foundation, turns out that the reduced rhisdacomplete. Namely, one draws somewhat

surprising attention to that the model lacks angcdgtion of that element of the system which
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provides the coupling between the rotors. Moreitbetatudies lead to the following structure of

the refined model:

d—p:(S—D)p; z—k_ll_J=5+Qsinli+ Ro?,

where ,0=,0(T) describes a measure of the amplitude of osciliatiof the elastic foundation.

This additional equation appears as a result ofptrese modulation of the angular velocity of
rotors due to the elastic vibrations of the basettat, the perturbed rotors, in turn, cause the
resonant excitation of vibrations of the base, diesd by the first equation. In the study of the
refined model, one can explain that the stable lmymization requires the same condition:
0% -Q? <0. But, one more necessary condition is requirechelg, the coefficient of the reso-
nant excitation of vibrations of the base S showdtl exceed the rate of energy dissipatidn

i.e., S<D. The last restriction significantly alters thelsligdy region of the synchronization in
the parameter space of the system that will be dstrated by some specific computational ex-

amples.

Equations of motion

We consider the motion of two asynchronous driveasinted on an elastic base. A mathemati-
cal model is presented by the following system afely cited differential equations [34, 35],

which may be considered as a generalization tqZE#):

i + prp + 2077 - myr, (B, sing, + ¢, cosg, )~ m,r, (@, sing, + ¢,% cosp, )= 0;
|1¢1+H1(¢1'¢1)_L1(¢1’¢1)_mlr1’75in¢1 =0 (3-1)
|8, + H,(8,.8,) - L,(8,.9,) - myrsising, =0,

wherem is the mass of the base, modeled as a rigid baitlyome degree of freedom, character-
ized by a linear horizontal displacement p is the coefficient of elasticity of the platform;is

the damping coefficient, mi are the small massescoéntrics with the eccentricities (radii of
inertia); J, are the moments of inertia of rotors in the absesfcimbalance:H, (¢,,4,) stands

for the driving momentsy, (¢1,¢1) denotes the resistance moment of the roterl(2). The
angles of rotation of the rotorg, are measured from the direction of their axis ¢eun
clockwise. Assume that the moment characteristiesaaoh driver and torque resistance have, as
previously, a simplest form, i.eH, (¢i ,¢i)= M, -k@ , L (¢i N} ): k, @, . Here,M, are the con-

stant parameters, respective for the starting pokatand k,; stand for the drag coefficients of
the rotors. Respectively, the subscript “1” refiershe first driver while “2” to the second one. If
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we allow for such a simple linear model of the mateeof static characteristics of the drivers,

then the dimensionless form of Eq. (3.1) can beitam such as it follows:

%+ x-+ 20k~ uk, (B, 5ing, + 9,7 cosp, )~ ik, (8, sing, + 9,7 cos, =0,
@, +ap, —b — uk,cXsing, =0, (3.2)
@, +a,@, —b, — ux,c,xsing, =0,

where u appears in the role of a $mall parameter of teblpm. The parameters, and x, are
of order of unity such that, = ux, and u, = uk,, where 1 =2m ri/(ml +rr12). We introduce
new notations: a =(k, +k)/Jap, b =M /Jaf, c =mr +r,)/4d, (i=12). Here,
W, = \/m is the oscillation frequency of the base in thesemlte of the devices,
d=(r, +r,)wyq/(m +m,) is the dimensionless damping coefficiertjs the new dimensionless

linear coordinate measured in fractions of theusdif inertia of the eccentrics. The set (3.2), in
contrast to the original equations, depends notherdimensionless time= wyt .

The problem (3.2) admits an effective study byriethod of a small parameter. In order to ex-
plore this one, we should transform the system) (@2 standard form of the six equations re-

solved for the first derivatives. The intermediateps of this procedure are the follows ones.
Firstly, we introduce the new variablgs, w,, @w,, associated with the initial dependent vari-

ables by differential relationx =y, ¢, =w,, ¢, =w,. Assume thaju = 0n the set (3.2). Then
one defines the transform to the new dependenéias based on the method of varied con-
stants: ¢(r) =T+ a(r), w, (r) = Vl(r)exr(— alr), w, (r) =V, (r)exr(— azr), ¢1(r) =Qr+ ,81(7),
6,(r)=Q,r+ B,(r), wherex(r) = p(r)singr) and y(r) = p(r)cosdr), Q, and Q, are the par-
tial angular velocities of devices. Herg(r), a(r), v,(r), v,(r), B.(r), B,(r) are the six new

variables of the problem.

The sense of these new variables is followipfr), a(r) are the amplitude and phase of base
oscillations, respectivelyg,(r), £,(r) are the angles and(r), v,(r) are the angular velocities

of the rotors. The standard form suitable for farthnalysis is ready. Because of large records,
this standard form is not given, but the intereststler can trace in detail the stages of its deri-
vation [36]. Solution of the system in a standardhf is solved as transform series in the small

parameter:

47



pr) - (T, T,...)+ pp® (1) + 12 P9 (1) + .
a'(T)—» a(Tl’TZ’ )"UUO' (T)"'lua (T)+

1(T) Vl(Tl’Tz’---)+ﬂV1l (T)+/J V12 (T)'l'
(1) = V(T T )+ 10,0 () + 20,2 (1) + .
B(r) - BT, )+ B () + 1280 (0)+ .
Bo(1) =~ BT T, )+ B (1) + 18, 2)(r)+---

S

-

(3.3)

<

Here the kernel expansion depends upon the slowdehscalesT, = ¢"r, which characterize

the evolution of resonant processes. The variahitssuperscripts denote small rapidly oscillat-

ing correction to the basic evolutionary solution.

Then it is necessary to identify the resonant doms in the standard form. The resonance in the
system (3.2) occurs within the first-order nonlinapproximation theory, whef, ~1 or when

Q, ~1 or if the both parametel@, and Q, are close to unity. All these cases require ars¢pa
study. Now we are interested in the phenomenorhefphase synchronization in the system
(3.2). This case, in particular, is realized®f ~ Q, #1, though the both partial angular veloci-
ties should be sufficiently far and less than unityorder to overcome the instability predicted
by the Sommefeld effect, since the first-order agjnation resonance is absent in the system

(3.2) in this case. Such a kind of resonance isifiested in the second approximation only.

In addition to the resonance associated with thadsird phase synchronization in the system
(3.2) there is one more resonance, wernQ, —Q, ~0, which apparently has no practical sig-

nificance, since its angular velocities fall in tmne of instability.

Note that other resonances in the system (3.2pbsent within the first-order nonlinear ap-

proximation theory. The next section investigatese cases are in detalil.

Matching condition Q,-Q, ~0

After the substitution the expressions (3.3) i@ standard form of equations and the separation
between fast and slow motions within the first-ordenlinear approximation theory in small
parametery one obtains the following information on the smaotof the system. In the first ap-
proximation theory, the slow steady-state motionkeh 7 —» «) are the same as in the lin-
earized set, i.e.,p=cons, a =cons;V, =const v, =const; £, =const, 5, =const This
means that the slowly varying generalized cooré®sat, a, v, andv,, B, u £, do not depend

within the first approximation analysis upon theygibal timer nor the slow timeT,. Solutions
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to the small nonresonant corrections appear aflatfs: namely, there are small additions to the

amplitude and phase of the elastic base:

K,Q2 cos{(Q2 ~)r+¢,-a —QZJ K Q2 cos{(Q1 +1)r +4¢, +a—Ql)
) a ), a ),
pO(r)=-H Q,-1 Q,+1
2A
K,Q2 co:a{(Q2 +)r+¢, +a —QZJ K, Q2 c05£(§2l ~)r+¢, -a —Ql)
. a ), 3
Q,+1 Q,-1
) Q, ) Q,
K,Q%sin (Q,-1)r+¢,-a--"2| kQ32sin (Q,+1)r+¢, +a--=
%), &),
a(l)(r):_g Q,-1 Q,+1 |
Kngsin((Q2 +)r+¢, +a —sz /(1Qfsin((§2l ~1)r+¢, —a—Qlj
+ %)_ &
Q,+1 Q,-1
(3.4)

additions to the angles of rotation of rotors:

sin((Q1 -Ur+¢,-a —%J sin((Q2 +1r+¢, +a-

Q,
a2

(r)= HCKy |

o N .
A 2a, Q-1 Q,+1 '
. Q . Q
ok 5|n[(§22—1)r+¢2—a—azJ S|r{(Ql+1)r+¢l+a—allj
(@) r)= 202 | _ 2 4 ,
£ 2a, Q,-1 Q,+1

(3.5)

and those to the angular velocities, as well:
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(Q, —1)(a12 +(1+ Ql)Z)sin((Ql ~Nr+¢, -a _%] +

+ al(aiz + (1+ Ql)z)co{(Ql _1)T + ¢1 -a _&J -
v ()= MK, A &
1

JECTIZEN) ) —((1+ Ql)sin((Ql Fr+d +a —%D +

+ al(af + (1‘91)2)00{(91 +r+¢, +a _%]

(Q, —1)(a§ +(1+ QZ)Z)Sin((Q2 ~r+¢, —a—%j+

'*'az(az2 +(1+Q2)2)CO{(QZ _1)T+¢2 _a_%] B

A+ e,y o + 6-0.)] —[(1+ Qz)sin((Qz r+¢,+a —&D +

2

Wie)- i

"'az(az2 +(1_Qz)2)co{(92 +1)T+¢2 +a_&j

a2
(3.6)

This solution describes a slightly perturbed motdrihe base with the same frequencies as the
angular velocities of rotors that is manifestedha appearance of combination frequencies in
the expression for the corrections to the amplitadd phase (3.4). Corrections to the angles
(3.5) and velocities (3.6) also contain the simgdarall-amplitude combination harmonics at the

difference and sum.

Now the solution of the first-order approximati@ready. This one is not suitable for describing
the synchronization effect and call to continualfer manipulations with the equations along the
small-parameter method. Using the solution (3.4x-3a@er the substitution into the standard
form, with the help of expressions (3.3), one aigahe desired equation of the second-order
nonlinear approximation, describing the synchramiraphenomenon of a pair of drivers on the
elastic foundation. So that after the second switstn of the modified representation (3.3) in the
standard form and the separation of motions intevshnd fast ones, we obtain the following

evolution equations
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siny

jf (5-D)o-Pla,-0,)™

dy )
— =J0+Qsin¥ + Rp?,
aT, Q Ro

(3.7)

where LP( ) ¢1( ) ¢2(T2)—AT2 +Q,/a,-Q,/a, is the new slow variableA =Q, -Q, de-
notes the small detuning of the partial angulansites @ =(Q,-Q,)/x?);D =d/ ?is the

rate of energy dissipation. The coefficients of 837) are following:

S= aCkK, (3(22+a1 +1) N a,C,K, (3(22+a +1) _
4( )(a2+1 Q )(a2 1+Q)) 4( )(a1+1 Q )(a1+1+§2))

P= KlKZ,QlZQg(l-'- Qle) :
A-0;j-a3)

sl )

Q= 2 |a| 1-Q2 1-Q?
220, (Q2 +a2 +3) k20, (Q2 +a2 +3)
)(a1+1 Q )(a1+1+§2))

R=
4Q? )(a2+1 Q) Jez+(+0,)) 42
Let the detuning be zero, then these equationkighty simplified up to the full their separa-

tion:

do dw . 2

—=(S-D)p; ——=Qsin¥ +Rp". 3.8

ar (s-D)o ot =@ Ro (3.8)
Equations (3.7) represent a generalization of taedard basic equations of the theory of phase
synchronization [37], whose structure reads

dv
=0+Qsin¥
dT Q

Formally, this equation follows from the generatizaodel (3.7), if we pup = 0, then the gen-

eral solution has the form

w(T,)= 2arctar£%(tar(T—22\/52 -Q? +%\/52 -Q? }/52 -Q? —QD ,
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where C is an arbitrary constant of integration. This siol implies the criterion of the stable

phase synchronization:

52 _QZ < O (39)

which indicates that in the occurrence of the stayinchronization the phase detuning must be
small enough, compared with the phase modulatioanpater. If this condition is not satisfied,

then the system can leave the zone of synchroaizati

On the other hand, the refined model (3.7) saysfthahe stable synchronization the perform-
ance of the above conditions (3.9) is not enougls &lso necessary condition that the coeffi-
cient of the resonant excitatidd of vibrations in the base should not exceed the oshenergy
dissipationD, i.e., S< D. The last restriction significantly alters thelsli&y zone of synchro-
nization in the space system parameters that i®dstrated here on the specific computational

examples.

Table 3.1 Parameters of stable and unstable regimes ohsynization

H G C, K, K, a a, Ql Qz AZ_Q2 S
1]01]1 1 05| 05| 1 1 0.751 0.75 -0.244 -0.204
21011 1 05| 05| 1 1 0.251 0.25 -0.072 0.008
31011 1 06 | 04| 1 1 0.25 0.25 -0.075 -0.001
4 1011 1 06 | 04| 1 1 0.251 0.25 -0.075 0.009
51011 1 06 | 04| 1 1 1.25 1.25 0.239 -0.085
6 01]1 1 05| 05| 1 1 0.26 0.25 0.998 -0.007

Examples of stable and unstable regimes of synchrmation

The table shows the calculation of the differemiotietical implementations of stable and unsta-
ble regimes of the phase synchronization (Table JHe example 1 (see the first line in the ta-
ble) demonstrates a robust synchronization wittallsmismatch between the angular velocities
of drivers, d = 0.1. The example 2 (see, respectively, the secondititiee table, etc.) displays
an unstable phase-synchronization regime at the sanall difference between the angular ve-
locities, i.e.,0 = 0.1 One can reach a stable steady-state synchramzaditern in this example
by adding a damping element with the coeffici@nt 008. The example number 3 is a robust
synchronization for the small differences in ecdest(x, — x, = 0.2) and equal angular veloci-

ties. The example number 4 is an unstable synchation mode with the same small differences
in eccentrics &, —k, = 02) and small mismatch in angular velocities, i.é.= 0. . Ghe can

reach a stable regime in this example by addingssightive element with the damping coeffi-
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cient D>0.009. The example number 5 is an unstable synchrooizatgime. One cannot
reach any stable synchronization regime in thisvgta, it is impossible, even when adding any
damping element. The example number 6 is an urstagime of synchronization at different

angular speeds. It is also impossible to achieyesastainable sync mode in this case.

Matching condition 2-Q, -Q, ~0

After substitution from the expressions (3.3) itibe standard form of Eq. (3.2), separation of

fast and slow motions within the second-order apipmation in the small parametar, under
the assumption th&2—-Q, —Q, =0, one obtains the following evolutionary equations
sin§  d¥

do _ . dv
aT =(s-D)p-P(2-9Q, Q)4p, o Q+5-P(2-0Q,-Q

) Rt (3.10)

where LIJ( ) ¢1( )+¢2(T2)—2a(T2)—AT2 -Q,/a-Q,/la, is the new slow variable
(A=2-Q,-Q,); 6=(2-Q,-Q,)/ 1/ is the small detuning. The coefficients of Eq1(8.are
as it follows:

_ aCK, (3.(212 +a; +1) " a,C,K; (3.(22 +a; +1) _
41-0,F [ + (-0 ol + (0, ) -0 P8 + (-0, F Jak + i+ 0.))

Kk, Q1Q;

T 0-0)i-q,)

( (Za1 jQZ+a1+ a1+1jc1( (Q‘z‘+(2a§—2j +a; +2a2+;jc2/(22
—_— \ + i x .

O e e+ o)) @+ ffa+are)y)

ne c?k2Q,(Q2 +a2 +3) . 2k20,(Q2 +a2 +3)
4(1_Ql)z(a12+(1_Q1)2xa12+(1+Q1)2) 4(1_Q ) (a2 + 1 Q xaz 1+Q ) )

The resonance of this type, as already mentionednbagractical significance. Let the detuning
be zero, then these Eq. (3.10) are highly simplifipdo the full their separation:

do

—=(S-D)p;, —=

T, (s-D)o dT =Q-Rp”.
The formal criterion of stability is extremely sinepINamely, the coefficient of the resonant ex-

citation of vibrations in the base S exceeds nordte of energy dissipatioB, i.e. S<D, but

the synchronization is awfully destroyed at anyifpgesvalues of other parameters.
53



Resume

Synchronous rotations of drivers are almost idie @eguired no any high-powered energy set in
this dynamical mode. Most responsible treatmenttlier drivers is their start, i.e., a transition
from the rest to steady-state rotations [38]. Sa,tthe utilizing vibration absorbers for high-
powered electromechanical systems has advantageouke two main reasons. On the one
hand, it provides a control tool for substantiatitigating the effects of transient shocking loads
during the time of growth the acceleration of dréveThis contributes to integrities of the elec-
tromechanical system and save energy. On the b#ret, there is an ability to configure the ap-
propriate damping properties of vibration absorltersreate a stable regime of synchronization
when it is profitable, or even get rid of him, testkoy the synchronous movement, creating con-

ditions for a dynamic interchange of drivers.
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THERMO-MECHANICAL INSTABILITY IN VIBRATION
ABSORBERS

We analyze a problem of the thermo-mechanical lmigiacaused by small changes of a viscous
damping in vibration absorbers. The nonlinear cogpbetween the oscillations and temperature
takes place due to a linear thermal dependendeedafdefficient of energy dissipation. This pro-
vides typical phase— amplitude frequency pattetherent in unstable regimes. While the damp-
ing coefficient decreases with the increase in¢ngperature, the effect of bifurcated oscillations
can be exhibited brightly as some abnormal opegaggimes. The vibration absorber appears as
a complex dynamical system, behaving strongly upenambient temperature. Typical thermo-
mechanical instability patterns are traced in dl@tdhin a parametric analysis along an approach
closed to the Lie method. This study would expBome unwanted dynamical effects accompa-

nying the utilizing of vibration absorbers.

On the one hand, dynamic tests can exhibit abnoopedating regimes accompanied with some
overheating of a fluid contained in vibration alisos. As a result, the amplitude of oscillation
can increase dangerously. While on the other h#red functioning may be quite satisfactory
even under almost the same experimental conditieresn a physical viewpoint, it is obvious

that the overheating causes a decrease in thevisgdsity, so that the amplitude of oscillations

increases, and then, the efficiency of the setdsiced. These specified abnormal operating re

gimes require some theoretical explanation. Thegmestudy is an attempt along this way.
Equations governing the motion of a spring pendupgssessing a sufficiently large coefficient
of energy dissipation play the role of the simplifimathematical model of the vibration ab-
sorber. It is assumed that the coefficient of epeligsipation depends upon the ambient tem-
perature. Simple temperature dependence betweesmtrgy dissipation and temperature char-
acteristics is proposed as a linear function witimall slope, which enter both into the heat bal-
ance equation and that describing mechanical wimsit The equations of the mathematical
model are investigated using a small-parameter odetinder the assumption that the external
harmonic excitation is moderate so that it canmaise significant large-amplitude nonlinear os-
cillations. The thermal dependence of the dissieatiinction is assumed to be small, as well.
The study of steady-state oscillatory modes rewigismic processes treated as dangerous from
a viewpoint of the operation of vibration absorbérsese are explicable in terms of the thermo-

mechanical instability of a dynamical system néarresonance.
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A physical picture of dynamic processes in theatilbn absorber is very simple. A drop in the
viscosity leads to some increase in the amplitudhéch contributes to some additional heat por-
tion. This heat causes some decrease in the vigcssi that the heat injection should be re-
duced. It is clear that such a process should heatad and would approach some stationary
state. However, the system under consideratiomgbeonlinear, has hysteretic steady-state re-
gimes of motion, which can lead to dangerous @gmihs even being far from the resonant fre-
guency. Such a situation is modeled by specificrgptas within a parametric analysis performed
to identify the most impact oscillatory patterndiese should help understanding how to use
these properties in practice when we investigateraplex technical system, which meets both

the electromechanical [1] and thermo-mechanicahphena, as a rule.

Problems of the thermo-mechanical stability arentérest for researchers both on traditional
and new areas. For example, the problems of ulirasechniques [39], phase transitions in aus-
tenite microstructures [40], the dynamics of maitlsrivith memory [41], oscillations in electro-
mechanical systems [42] call some adequate destripetween the thermal and mechanical
effects. Questions of the thermo-mechanical stghbili the light of the vibration absorbers have
not been methodically studied, being usually retd by most researchers to some purely me-
chanical models [43, 44]. The present study repitssan attempt to draw readers’ attention to
this subject, especially supposing high perspestimemagneto-rheological materials [45] com-
bined with active control techniques to providehhegfective solutions in a problem of reducing

the vibrations in mechanical structures.

A hydraulic vibration absorber contains the workargl compensation chambers with a viscous
liquid. The elastic properties of the hydraulic @iber are formed by the conical shell-shaped
elastomer wall and membrane. A damping of vibratimside the absorber is due to the dissipa-
tion of energy of turbulent fluid flowing to andofin the chambers through the bypass channels
(Fig. 4.1). These turbulent flows can lead to theitation phenomenon at sufficiently large ex-
ternal loads. It is believed that the cavitatioays! the principal role in seal failures of hydrauli

absorbers [46]. Though, this fact can obtain soifierdnt explanation.
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Fig. 4.1 A hydraulic absorber: 1 — support plate, 2 — cahshell-shaped elastomer wall, 3 —
liquid chambers, 4 — bearing, 5 — elastic membrénrepallet, 7 — bulkhead, 8 — throttle channels
[46]

During the collapse of cavities in a liquid, shoglives can be generated at the ultrasonic fre-
guencies. The thermodynamics of these waves igmoal enough. The collapse of cavities can
be accompanied by an adiabatic expansion and gpolirthe surrounding liquid in a small
neighborhood of the lost cavern, but the tempeeatan dramatically increase in the center. Al-
though, the total liquid bulk is heated slowly, mieadily, like during an ultrasonic washing.
Apparently, this thermal effect is not so signifitan terms of the correct functioning of hydrau-

lic absorbers.

However, the shock waves contribute to the erosfmolid surfaces of the structure. The liquid
is enriched with a suspension of very small soadiples. The viscosity of this emulsion drops
due to the temperature rise, the heat capacitydsaed, but the thermal conductivity increases.
The increase in the temperature reduces cavitas&a [47]. But under the resonant excitation
of the system at a critical value of viscosity, teenperature rise within the liquid may cause
large-amplitude oscillations that can lead to $adlires in the hydraulic absorbers. The present

study would show that such processes can realéypédce.
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We trace the influence of temperature effects uperamplitude—frequency dependence describ-
ing the steady-state oscillations in vibration abscs. The equations governing motion are
based on the most basic general physical considesatwhich are briefly mentioned in the in-
troduction:

X=Y,

my +23(1-aT)y +c(1+ Bx)x = —(P + upsinat);

CVT =28(1-aT)y? -VG(T -T,),

where the reduced coefficients of the vibrationoaber are followingm is the massp is the

damping coefficientc is the coefficient of elasticityg is the thermal coefficient of viscosity;
S is the coefficient of elasticity, which charackes an asymmetry of deformations; stands

for the volume;P denotes the static loagh is the maximal value of the external harmonic éorc
at the frequency; u is the small dimensionless parameter. These @mqsatmaking allow-
ances for the thermal balance, are also charaetkhy the following parameter€ is the heat
capacity; G is the thermal conductivityx(t) denotes the displacemefit{t) stands for the tem-
perature andl, is the ambient temperature. We determinate thiéc slaformation under the

static load:A =-c++/c* —48P /2¢c3, and the natural frequency of oscillation in tisence of
energy dissipationw:\/\/ic2 —4,8Pi/m. Then, the following dimensionless variables are i

troduced:

r=at: X(r)= —2xX(t)cB-c+4c?-4p8P

i e L Y()=ylt) ha; A(r):T(z_E)To _

Here | =3V is the characteristic length scale. The equatafn®otion in these dimensionless

variables can be rewritten as

X =Y;
2y 2 _
Y+X+2—5(1—aTO)Y+ pzsin[ﬂj:—,u(cﬂl X ZUZTOJwYA); (4.1)
ma mlw w mlw
2, 2(1_
i+ G A:ﬂzd @ (1 aTO)YZ_
Cw CVair,

Upper dots denote a differentiation with respedht® dimensionless time. The general solu-
tion to the linear subset (4.1), as— 0, is given by the expressions

58



moo moo

X ()= Aex‘{—d(l—aTo)HmerjLKex{—é(l—aTo)—imer

p (256«)(1— aTO)co{aL)Urj + (a)2 -’ )msin(a;j] | 4.2)

2,2
! me(e +a)+ 4#(52(1—0%)2 - m;ﬂ J

Y(r)=X(r), Ar)= Bexp{—ﬂ}

Cw

Here, A is an arbitrary complex constam (corresponds to the complex conjugat®)is a real

arbitrary constant;Q =\/ m’w” —52(1—ch0)2 /m denotes the resonant frequency at which the

linear system reaches the amplitude peak at the s@epuency of the external excitation.

Evolution equations

To construct the first-order nonlinear approximatesymptotic solution as series in the small
parameteru , the paradigm of the method of arbitrary constamiations is used:

X(r)= Alr)expglr)+ Alr)expp(r)+ uy(r)+ s (r)

Y(r) = dr)Alr)expelr) + plr)Alr)expa(r) + o (1) + v, (r) (4.3)
AMr)=B(r)exd-Gr/Ca)+w,(r)+ (7).

Here ¢(r) = —(0(1- aT,)/ mw +iQ/@)r is the phased(r) denotes the complex conjugate). All
old constants are now varying at the time= A(r), A=A(r), B=B(r); the functionsu, (r),
v,(r), w,(r) (j=0.1) represent the so-called nonresonant correctibis.order is determined

by the indexj which should be fully compatible with a standaxgansion of the sought func-
tion as series inu . The nonresonant corrections are introduced tstooct an asymptotic solu-

tion by an appropriate recursive method, due taesthallness of the parameter.

The polar coordinatesa(r) and #(r), are introduced:

A7) =a(r)expi ¢(r)exr{MJ;

moo

A(r)=alr)exp(-i ¢(r))exr{%j; (4.4)

B(r)=0(r)expGr/Cw)
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This transform allows tracing the so-called "faatid "slow” motions near the resonance pro-
vided that the external excitation of the system)(#s small. The "fast” variable is characterized

by the frequency of the external harmonic foree, while the new phase coordinate
w(r)=¢(r)-(w-Q)r/@ plays as the “slow” one, where the differenge- Q is associated

with the phase-matching condition, i.(ﬂ(r) should be a small value of order. After substi-
tuting (4.3) and (4.4) into Eq. (4.1), the averagprocedure provides the following zero-order

approximation evolution equations

5(1—aT0)a_ p

a+ cosy =0;
maoo 4Qmad .

p+@=Q, P sing/(z) _ (4.5)
w 4Qmad a

©+GO/Cw =0.

The stationary solution to the set (4.5) is obtdibg equating all the derivatives to zero:

2

al = P :
16 ’m*Q2(@? + o - 2a0)’
__ mw-0) )
W, = arctarE 5(1—0"'0)} (4.6)
©, =0.

wherea, , ¢, and ©, denote the steady states to the variablésaady, correspondingly.

The equations describing the zero-order nonresawargctions read:

)

\@|m°w? 12~ 6% (1-aT, )’ |

MVO ) (0)s po(L- aTo)co{C;T] i psin(a;rj |

ma 2w’ mimi@? 12~ 52 (1-aT,)?  2@'ml

U (7) = vo(7) +

(4.7)

Vo (T) ="

After finding a particular solution to Eq. (4.7het zero-order approximation is completely built.
It is obvious that the zero-order approximatiortisteary solution, in terms of the substitution

(4.3), coincides exactly with the correspondingitoh to the original linear subset (4.1).
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To construct the nonlinear first-order approximatevolution equations, we can again use the
same substitution (4.3), pointing out that the zenaer nonresonant correction is already known

as the particular solution to the inhomogeneowesalidifferential set (4.7).

The evolution equations within the first-order noghr approximation hold true:

(1-aT,)5 . pcogy
ma a AmaQl
a)—Q+ p sing
w AmaQdl  a

+ #@(Jﬁlsinlﬂ + ), COFY + y:LSa) =0;

~ sin co
+,u®(y21 a‘// TV :// + yzaj =0 (4.8)

a+

Y+

.G .
O+ O+ o + alys, sing + y, cogp) + %)= 0

The coefficients entering these equations areviafg:

_ ad)TO(Zaf(ll— aT, o + (@ - of J@® - wQ))
16m*Q%a (P (1- aT, ' 3% + m?(w? — o )14)

11

_ ad*pTmafl-aT,)w? + o ~2a0)
e et Q7 (o (L aT, & + i@ - o?)14)

oaT, |
maw

Vis=—

ad’pT,(1-aT, )@ + o —2a0) .
16mQ%at o (1~ aT, &% + n?(o? ~?f 14)

Vo1 =

adDTO(ng( )52+m2w (w af)(w a)Q))
16t o (L~ aT, &7 + 2 (o? - @?f 14 Q7

__ao’T,(1-aT,).

2 m’Qw

p2oT(1-aT, Jw(2an - (o +&?)) .
16cVTQ2 (0 (1- aT, 2 3? + P (of - ) 14)

Voo =~

poT, (1- aT ) wle? (1- aT, F 82 + e (o - w?)12))
CVT@mQ|e? (1- aT, &% + P (o - [ 14)
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The structure of the evolution Eq. (4.8) is tramspaienough. It is obvious that the intensity of
the thermo-mechanical effect is determined by thallsparameteq. If this parameter is zero,
then there is no temperature effect on the mechbhmiotion. If we assume the thermal viscosity
parameter to be zero, then the coefficiepts ., Vi, and y,,, V.., V,s should be also zero in
the equations for the amplitude and phase. Thene temperature effect on the mechanical mo-
tion again. Let us remove these limiting cases foomsideration, and then the nontrivial nonlin-

ear thermo-mechanical coupling becomes apparent.

Phase—amplitude frequency response with thermaéef

The equations determining the steady-state osmijlahodes follow directly from the evolution

Eq. (4.8) if we put all the velocities equal to@eAs a result one obtains the set of three tran-
scendental equations for the same number of unksi@ygy and©:

ol-aT,) _ 7+ 1B ing J a
(mm °)a+ 4mcpvQ| cosy + 1B(y;, Sing + y,, CoSP + ;) = 0;

w—-Q p sing = sing cosy i
+ + + + =0; 4.9
o 4m Q | a /'{B(VZI a y22 a y23j ( )

GO/Car+ iy, +alys, Sings + vz, COSP) + y158%) = 0.

The unknown quantitieg, ¢ and © characterizing the amplitude, phase and the tesyer,
respectively, can be parameterized in differentsvayet these be the functions of the external
frequencya . Then, one can build the so-called amplitude—pHi@spiency curves, taking into
account temperature effects. For clarity, we maysater the specific values of individual pa-

rameters to the system (4.1). Let the values obehparameters areV = 395x10°m’;
m=05kg; c=5x10'"Nm™; d=100kg/s; P=10°N; p=500N; a =10°K™; B=314m™";
C =10’kg/ ms’K ; G=10°WK™'m™; T, =300K ; | =0.034n. Then, there is the possibility to

trace the behavior of the amplitude and phase cteistics of the stationary processes depend-
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ing upon the small parameter. The steady-stateactaistics when the parameter is small
enough, e.g.# =107, are shown in Fig.4.2. The frequency in all thetyries is normalized by

the valuew =294.2Hz, so that the maximal amplitude should be nearyuriihe amplitude,
a(v), and temperature@(v), are presented as functions of the dimensionlesguéncy

v==ulw.

It is obvious that the set of stationary statesosiposed of two distinct subsets, namdlyand

L, which we call the high- and low-temperature bhes; respectively. The amplitude— and
phase—frequency branches, characterizing the lowpeeature subsdt, are almost indistin-
guishable from the related curves (4.6), charagtegithe linear subsystem. At the same time,
the high-temperature subset H appears entirelytaldbe nonlinearity. This subset consists of
both stable and unstable fixed points separatelitbis where the derivatives become infinite.
Obviously, the stable stationary regimes H canmotdachable from any initial conditions. For
example, to excite any stable high-temperatureosiaty regime, the liquid inside the absorber
should be pre-heated up to some predetermined tatope. Moreover, the frequency of the ex-
ternal harmonic signal should be placed withingpecified band. At the same time, the station-
ary regimes, correspondent to the low-temperatubsetl, are achieved almost at any initial
conditions. Let the small parametemcreases. How significant are the changes owveathpli-
tude and temperature characteristics? The low-teatyre branch L changes slowly. The ampli-
tude varies slowly than the temperature, but tisenmance peak is shifted slightly into the high-
frequency band. In turn, the high-temperature bdrathachanges very rapidly with the growth of
the small paramete:. Starting with a certain critical value of thisrpmeter, the high-
temperature characteristid is united with the low-temperature branth This causes the
thermo-mechanical instability of the system, whiglexpressed in a high jump in the oscillation
amplitude and a significant increase in the tempeean the vicinity of the resonance frequency
and even some higher, as well. Figure 4.3 illusgrdhe stationary states near the critical point.
The path (a, b, c, d, e, a) in this figure représéme hysteresis loop when the external frequency
is scanned to and fro. The system under consider§i.8) is complex enough to evaluate ana-
lytically their stability proper- ties. Nonethelesaimerical tests can confirm oscillatory patterns
naturally observed in systems with a hysteresigmtRmt that the thermo-mechanical instability

in vibration absorbers is obviously unacceptablpractice.

Moreover, we should not forget that Fig. 4.3 demi@tes the results provided by the first-order
approximation nonlinear model (4.8). Though, dineemerical calculations of the original equa-

tions of motion (4.1) in some characteristic poicagfirm that the thermo-mechanical instability
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actually takes place. It turns out that the sotutio the first-order nonlinear approximation Eq.

(4.8) practically coincides with those of the ialtproblem (4.1) at small amplitudes in the vicin-

ity of the resonant frequency. Some discrepanowden the exact and approximate solutions

naturally become solid with increasing in the exérmeriodic load. It means that the second-

order nonlinear approximation equations play amalatole from the viewpoint of a more de-

tailed description of the frequency—amplitude dejesces. But this question, being a nontrivial

one, is beyond the scope of present study.
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Parametric analysis of the stationary solutions

To carry out a parametric analysis of stationatyteans to the nonlinear evolution equations of

the first-order approximation, the left-hand sidé=q. (4.9) are indicated as it follows:

3(1-aT,) 44 P

i maw AmaQl cosy + /'é(ynsmw +),,co090 + ylsa);
w—-Q p sing ~ sing cos |
) ' * ¥ ey 4.10
Q w Amal a 'ue(yﬂ 5 V22 a yzsj ( )

G (v, <ingd U 3
R:ae-'-:u(yso +a(y318|n[ﬂ+y32COS//)+V3332)-

The unknown quantitiesi, ¢ and © describing, as before, the amplitude, the phasetemd

perature, respectively, are now considered to bmomfunctions of the small parameterThe
functions P(a,,0), Q(a,,8) and R(a,@,0)are differentiable almost everywhere in the space

of the system parameters. Then, the parametrigysisadf stationary solutions is available with
the help of the Lie series [23,48]. These functithsQ and R should be once differentiated by

the variableu in Eq. (4.9), then these equations are resolvadgéamplicit set for the first de-

rivatives. The result appears as the followingetwedinary differential equations
L we) &Y=, (ap.0) = .(a.w.0) (4.11)

It is obvious that expression (4.10) representiek@olutions to the set (4.11) with the initial
conditions defined by the known parametafs), ¢(0) and ©(0). These parameters are com-
pletely determined by the right-hand sides of Beg); i.e.,a(0) = a,, ¢(0) =y, and©(0) = ©,.

The structure of these equations is not so eagyit loan be effectively studied in detail using
available parsing algorithms [49]. Point out thaplecit solutions to Eq. (4.11) may be repre-

sented with the help of the Lie series:

2
a(u)=a,+ uGay ++-G?a,+...
2
D)=t + Gy, + 5GPy 4. (4.12)

2
0(u)=0,+uGo, +%Gze0 o

+7 o (B0 s Oo) =2

9 9
Here G =0, (20,0 @0) 5 —+¢,, (80 t0,00) 5 - u 0
0 0

0,

is the differential opera-

tor.
65



Dependence of steady-state solutions upon the smpdlrameter u

The numerical result to Eq. (4.11) is shown in &4, as an illustrative example. The values of
the system parameters are the same as previoustypdaks of the displacement and tempera-
ture are formed even away from the resonant frequéh, as we can see in Fig.4.4. A typical
resonant pattern should take place when the freyueiithe external signal tends to the reso-

nant frequency of the systefd. At the same time, the amplitude peak, accorditmlthe linear
theory, is near the resonant frequeiizy 1256 Hz, while the natural frequency should be about

w =294.2Hz in the absence of damping. It means that theeefiequency shift caused by the
nonlinearity. This one is described mainly by taent ,uyzsé, entering into the equation for the

"slow” phase of the set (4.7). This one is resurasdf the system (4.1) tends to approath

vacuopattern due to such a kind of compensation.

Steady states versus the nonlinear elastic parametg

The steady states obtained by scanning the parafebaracterizing the asymmetry of the elas-
tic characteristics are shown in Fig.4.5. Theneassignificant impact on the dynamics of the vi-

bration absorber even with a significant changéhia parameter. This result is generally con-
firmed by experimental tests with the vibration @ibers. In fact, the static deformation appears
in the presence of the static lo&d only. This means that the natural frequency ofllasion in

the absence of energy dissipatian= \/m/m , changes slowly with the growth of the

static load P, namely, as a square root, if the first-order m@mar approximation analysis is
considered. Though, the so-called self-action gffeherent in, say, the well-known Duiffing-
type equations, should be assuredly manifested wleening the second-order nonlinear ap-

proximation evolution equations.

Steady states versus the static load

The steady states along the variable paranfetesharacterizing the static load, are illustrated i
Fig.4.6. It is clearly that the static load does$ imfluence significantly on the dynamics of the

vibration absorber. This is generally confirmegbractice.

Steady states versus the damping coefficiedt

The steady states at various values of the danquafficient & are shown in Fig.4.7. As we can
observe, the thermo-mechanical instability canupmpsessed by large values of the damping pa-
rameter, for instance ad =190 kg/sThough, if this parameter exceeds the dampingt lim
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0 =210.12kg/s, then the system (4.7) cannot be treated as ititatsry one, because of ex-

ponential dynamical patterns, if the eigenvaluebfmm is considered. Point out that such pat-

terns with awfully transient dynamics are usualyacceptable in practice of vibration absorbers.
At small values of damping, a8=100kg/s, the path (a, b, c) indicates stable steady- state

gimes in direct scanning over the small parametewhile those are denoted as (c, d, a) in the

case of the reverse tracing that is shown in Fig.4.
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Resume

A mathematical model describing the thermo-meclanitstability in the vibration absorbers
have been traced in this chapter. This instalgityaused by the nonlinear resonant phenomena.
The temperature of the fluid inside the vibratidsa@rber increases under the external harmonic
excitation, so that the viscosity decreases, wthike amplitude of mechanical vibrations in-
creases, as well. However, the decrease in thesrigaestricts the heat injection. This leads to
the nonlinear steady states. In the vicinity of ilagonant frequency, the system exhibits brightly
expressed amplitude—frequency dependences, whistdprsome hysteretic patterns of oscilla-
tions. Parametric analysis of the system revealsttie thermal viscosity parameter appears as
the most sensitive parameter from the viewpointhef thermo-mechanical instability. This pa-
rameter approaches a critical value at sufficiesthall variations in the system. This means that
the using of liquid materials with a very smallimal viscosity coefficient is absolutely ineffec-
tive for the vibration absorber, since any innettarasuch as particles of metal or polymer, can
easily increase the value of the thermal viscosfiyto the critical value. This can lead to un-

wanted and uncontrolled dynamical patterns.

The model of the thermo-mechanical instability pregd in the present study is extremely sim-
ple, though being not so trivial in terms of thediglgorithms [49]. It is clear that some aspects
of the problem should be improved using numericathods [50] with allowances for more ap-
propriate physical relationships between the visg@nd temperature [51], some various effects
of nonlinearity are of high interest [52, 53], asl\w
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GEOMETRICAL NON-LINEARITY STABILIZES A WAVE
SOLID-STATE GYRO

It was recognized long ago that quasi-harmonicdst@nwaves in a thin-walled axisymmetric

resonator, mounted on a rotating platform, areexlip a precession. This significant phenome-
non is naturally associated with a concept of édssite wave gyro, or an inertial instrument

used to measure angular rotation rate, as if anyewaay be interpreted as a material particle
moving in a rotating frame of reference. Becausgehare no typical mechanical parts, these
wave sensors can be utilized with a lot of advaegagdo run such a gyro in vita, one should ex-
cite and keep on by certain means a standing watheeithin-walled axisymmetric resonator. Up

to now, there are known two ways how to do it, aathely, using either external or parametric
resonant mechanisms of excitation. Although botfesanecessarily require an additional feed-
back control device in order to stabilize instabteother parasite oscillations of the resonator.
This chapter, following the study of nonlinear wawe a thin circular ring, demonstrates that the
solid-state wave gyro may be naturally stabilizest jat the expense of the geometrical nonlin-
earity by combining advantages of both the posdticlesonant excitation and the parametric

resonance.

Modern solid-state wave gyros based on hemispHédrigh-purity quartz resonators are associ-
ated with satellite guidance systems intended dagiterm missions extending up to 15 years
[54]. It was found long ago that any flexural stamgdmode in a rotating thin-walled axisymmet-
ric resonator is subject to a precession, becalisigeoso-called wave inertia effect [55]. This
means that the precessing wave responds effectivellye rotation, like a material point tends to

conserve the spatial position in an inertial frapheeferences. The wave mode turns about the
symmetry axis of the resonator with the angulapeigy, K(n)é?, against the platform rotating

with the angular velocityd. Here, K(n) denotes a negative-definite function describingpar-

ticular, specificities of the resonator geometrigisicoefficient depends sensitively upon the pro-
file of the precessing standing mode with the waumbern. For instance, experiments with
the primary flexural waveformn(=2) in a small hemispherical shell, rotated afterlzve ex-
citation about the sensitive axis at the angle , si2owed that the summary angle of rotation of
this mode is aboué3 [55]. This example serves as a prototype ofrgeasensor. The principle
of operation of this sensor is based, accordingihé wave-participle dualistic paradigm, on the
inertia of waves in solids. Such a gyro possesdesa advantages compared to a conventional

one [56-58], because of absence of typical mechbparts.
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For operating the wave solid-state gyro, the systbould be forced to vibrate in a flexible mode
of the axisymmetric resonator. The amplitude oséhescillations has to be maintained on some
acceptable level in the presence of energy disempathe presence of damping requires pump-
ing permanently the energy into these oscillatiopexternal forces. There are known two main
schemes for the wave excitation, using the presefoenergy dissipation. The presence of
damping requires pumping permanently the energy these oscillations by external forces.
There are known two main schemes for the wave a&tiait, using the resonant properties of dy-
namical systems [56]. The first type is called aiponal excitation. This means that the external
force is modulated harmonically, both in the tinmel an the space, with the spectral parameters
which should be close to the corresponding parasetea driven mode in the resonator. The
second kind is associated with a parametric exeitaif vibrations, when the periodic variation
in some suitable parameter of the system, e.gniténe tension of the axisymmetric resonator,
is homogeneous one with respect to the circumfedenbordinate. The spectral parameters
should also be comparable with those of the drogmllatory mode of the resonator. In the first
case, resonantly forced oscillations occur at aalyer of the external excitation. However, the
excited standing wave is spatially glued to theebakthe resonator. Consequently, the wave
gyro cannot measure the applied rotation rate peemtdy, but just before the decaying, because
of energy dissipation, flexural mode may be reljatlcognized. In the second case, there is a
threshold of excitation, such that if the levelextitation is small enough, then the parametri-
cally excited vibrations do not occur, but if thigeshold is slightly exceeded, the motion be-
comes unstable. Therefore, an additional deviceeessary to stabilize the gyro. This study
shows that the wave gyro can stabilized naturally @ the geometrical nonlinearity of the thin-
walled resonator. To reach this conclusion, oneikshbuild a structural model of the wave gyro,
which has to establish a relationship between Hrameters responsible for the nonlinear phe-
nomena, the external driving, and energy dissipafltnere is no doubt that the wave gyro may

be represented by a thin circular ring in the sergase.

Equations governing the motion in a thin circulanmg

Let us consider plane vibrations of a thin ringtleé thicknessh and the radiusR, which can
rotate with an angular velocit(t) about the sensitive axis. The dynamical processestudied

in the long-wave approximation. To derive the et of motion, one can use the theory of
thin-walled shells based on the Kirchhoff-Love hy@ses. The distribution of displacements

inside the ring can be written as it follows [59]:6
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U) = v—c(ws -v/ R); Uy =W,

where v=\s,t) and w=w(s,t) are the circumferential and radial displacemectstespond-

ingly, dependent upon the circumferential coordinat and the physical timé. These are
measured from points located along the midlinehefring at the distance in the frame of ref-

erence associated with the rotating platform. Esgion for the densities of the kinetic energy K

and the potential energy are given by the followforgns

ph (v, +8v+ RE)” +(w, —6\/)2]; M= EFk? 2 _j,h,2

2R?

h/2 Css

where E stands for the Young’'s modulu§; denotes the cross-section squaoejs the mass

density; k is a tunable coefficient characterizing the s&éffa between the rotating platform and
the ring; e, = v, + W/ R+ E(wSS -v,/ R)+W52 /2 denotes the circumferential deformation. Equa-

7 ¥ss

tions governing motion possess the following vaoral form

(L), +(L, ). -L,=Qy

(LW)t M (L"Vs )s _LW_(LWSS )ss = Q(W) - Rv‘vl (51)

where L =K —T1 is the Lagrangian densit®,, and Q,, denotes the external forceR;= /7K
is the energy dissipation function of the rgte The explicit form of these equations, provided

that the damping is neglected, reads as follows:

2,2 2.2 2
\7+26W+6'?(R+w)—6’2v—czvs+C 2w, +X 2 V=C—(W§)S+Q(v)i
2 R R 2 2 ) (5.2)
W 260+ & — 8% (R+ w)+%V +c%a’ W, = ¢® (Vw,), -%Wi +%(W§)s +Qu)

whereV =v,+w/R and W =w, —v/R are introduced for brevity. After the introducitige
dimensionless variables:v=uyv; 'w=uw; ¢=s/R; t=Rr/c; 6'=R8/c, where
u, = ma><(\/v2 +W2); c=.,/E/p stands for the typical wave propagation velocay: h/~12

is the radius of inertia of a cross-section, EQR)&n be rewritten in the form:

U+ 200+ QU™ + W)~ 6V -V, + AW, + K7V = ’g( ) 53
W—26\7+6\/—92(,L1‘1+W)+V+£2\N¢¢¢ /,I[VW¢) 2]+,u W¢) 12+Q. |
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where £ = h/+/12R<<1 characterizes a small thickness of the rpgs U,/ R<< ish small

parameter introduced as a bookkeeping device foceuiures of the perturbation analysis
V=v,+w and W =W, -v. Primes indicating the dimensional variables hbeen omitted.

The set (5.3) should be complemented by the naperaddicity conditions

v(g.r)=v(g+2m1), W@,7)=wWg+2m,7).

Note that the role of the coefficient, characterizing the stiffness, is twofold. On tm hand,

this one plays as a necessary structural elemetiteofyro. On the other hand, let us suppose
this parameter to be zero, and then, the motioemed by Eq. (5.3) becomes infinite one due to

the rotation, at least within the linear approxim@t though the dynamical system possesses the

first integral in this case.

Dispersion relations

To study the kinematics of waves under the rotatade, it is useful to compare the spectrum of
linear oscillations in a uniformly rotating ring tithat in the rest. Let us suppose that the rota-
tion is absent, and then the normal modes of vimatcan be represented by standing waves as
a superposition of wave pairs traveling toward wfite same by absolute values, wave numbers,
equal frequencies, and identical amplitudes, as. Wewever, the frequency spectrum of the
corresponding oscillatory modes is deformed intatnog ring. This means that one cannot ob-
serve standing modes. Instead, the precessing waegsling in accordance with the angular
rate, appear as a reaction on the rotation. Moregeene asymmetry appears in the wave polari-
zation vector¥’. The precession rate of these waves is propotttortae difference between the
frequencies in the wave couple resulted as a stgngave, if the ring is in the rest. At the con-
stant angular rate, the wave precession appeaaskamematic effect due to the rotation of the
platform. Although the expression for the precassidll be done below in the case of the uni-
formly rotating ring, nonetheless, it is expectedtithe result would be generalized for small ar-

bitrary values of the angular velocity and angaleceleration of the rotating platform [56]. Let

13 Formally, the small parametessand u are the same, though the parametescales simul-

taneously both the amplitudes and the angular Téte parametee characterizes just geometry
of the problem.

Y The exception takes place in the case if the mediif the ring resonator is supposed to be un-
stretchable one [56, 61-64].

74



the angular rate of the rotating platform be camstédnen a formal oscillatory solution to the lin-

ear subset resulted from Eq. (5.3):

U+ 20OW = 1?Q%v =V, + £2W,, +k*v =0,
W= 20QV - (12Q*w— Q% [ £ +V + €W, ,, = 0.

has the following form

v(r,¢)= _;(ﬁ% +Bexpi(ng +ar), wr,¢)= Aexpi(ng + ar),

where the constant radial displacement is causdtebgentrifuge forces; the amplitude%s,and
B, are linearly interrelated, i.eB = pA. The interrelation coefficientsp, are defined by the

high-and low-frequency branches:

i(2.0p, , +n(L+£2n?))
== Y2 2 2 22 (5-5)
(1+£ )n +K —(a)k’n+/,1 Q )

Pin

The high-frequency branch is indexed ky=1, while the low-frequency one by the number
k =2. These coefficients satisfy the orthogonality dtod, p,,p,, = -1, for any wave num-

ber n (the oscillations are decoupled mt= , iDthe platform is in the rest). Each natural-fre
quency, marked byy, , refers to a normal wave. Absolute values of titerrelation coefficient

corresponding to the low-frequency branch, whicbfigmterest within the present study, versus

the modal number are plotted in Fig. 5.1.

Fig. 5.1 The modulus of the interrelation coefficient e tow-frequency branche(=0.01,
k =0.45,Q =0)
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The natural frequencies,, , , are defined by the following dispersion relation

(a+ e2)n2 + k2 = (a2, + 12Q2)Ja+ £2n® + k2 = (e, + 112Q2)) - (2up, , +nli+e2n2)f = 0.
(5.6)

If the angular velocity is zerd = 0, then this relation turns into the simple biquaidraqua-
tion:

—e2n® - g2(- o -2+ k%)t + ([P ~1)e? + 0P )n? - ' + L+ k2o — k% =0,
(5.7)

The roots of this dispersion relation (5.7) for thee linear vibrations of the ring are shown in
Fig. 5.2. The dispersion relation (5.6) possessas fieal roots for each, as well. One pair of
roots refers in general to the low-frequency fletunodes, while the second one belongs to the
circumferential ones. In the case of a small angte Q <<, ), the roots of the dispersion
relation (5.6) may be constructed asymptoticalljhgighe Lie series method [65], if one sup-
poses that the frequencies are differentiable fanstdependent upon the angular rate. For ex-
ample, the first-order approximation analysis révélae asymmetry in the natural frequencies at

the uniform rotation:

B 2,uQn(1+ gznz) 5
o 0) = 3, (0) 1+e2n® +(1+£2n? + k2 - 241, (0) roler). &9

T——

0 1

= b2
=N

Fig. 5.2 The high-and low-frequency dispersion branchesviores on the fixed platform
(£=0.01, xk =0.45,Q =0)
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Fig. 5.3 The dispersion branches, modal number3. Partial sums to the Lie seriess&t0.01,
k =0.45. The numbers refer to the order of approxionat

An illustrative example shown in Fig. 5.3 demont&sethat the first-order approximation curve
is completely enough for definite conclusions ie finame of the present study. Obviously, if
Q #0, then the second term in (5.8) splits the douleigetherated roots to Eq. (5.7). Figure 5.4
illustrates this in somewhat caricature mannergesithe angular rate should be huge enough to

visualize the change in patterns.

Fig. 5.4 Dispersion diagram for the precessing waveseaatithiform rotation £ =0.01, x =0.45,
Q=10). The solid curves are the same as plottedgns2
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The roots to the dispersion equation (5.6) aresgmimetric ones with respect to the angular rate:
a)k’n(Q)z -0, , (-Q). Each frequencyg, ,, consists of the antisymmetriwﬁf‘g = —w@n, and

the symmetric,wﬁl = ﬁsln parts, i.e.,a)kyn(Q)=a)('j2 +a)£f,1. Simple estimations show that
o =0(Q) and ol = w,,(0)+0(Q?). The antisymmetric part is satisfactorily approated

by the formula (5.8), which determines the wavecgssion versus the wave numlverlt is ob-
vious that in the rest, i.eQ =0, the coupling coefficients (5.5) are antisymmeftactions;
Pcn = ~Pr_n- This causes a formation of a standing mode caulpjea pair of waves traveling
in opposite directions with the same frequenciasidantical amplitudes, although, this symme-
try is broken in a rotating ring. Therefore, stampivaveforms cannot exist even at the uniform
rotation. However, if the angular rate is smallcomparison with the natural frequencies, then
one can interpret the wave motion as a slowly msog standing waveform, because the

asymmetry in the coupling coefficients has the sameasure as the angular velocity.

Note that the poinh= @orresponds to the axisymmetric radial oscillatibhis osculation is
typical one for any axially symmetric resonatorisTane is not subject to the Coriolis forces at

least within the first-order approximation nonlin@aalysi$’.

Nonlinear oscillations in a ring

It is subtle to consider a thin circular ring asimple model of a solid-state wave gyro, when
tracing the precession of flexural oscillationstiie absence of damping. However, the energy
dissipation always presents in practice. Therefthig, requires some external feedback control
to supply the wave motion. All the known types atCigation related to the solid-state wave
gyro, briefly mentioned in the introduction, aret mpite satisfactory from the viewpoint of ac-
tuation, driving, or stability properties. Sinceetlinear theory is not able to achieve the desired
goal, it is necessary to look for other theoreticalls within the nonlinear wave dynamics. The
idea is to use the exclusive property of the axisytnic mode of the ring to control the ampli-
tude of flexural waves in the gyro in the preseotenergy dissipation, just to use this one as a

“mediator” in the dynamical process.

> The trajectories of points occupying the midlirfetle ring, involved into the huge uniform
rotation, move along the elliptic orbits elongatsdthe Coriolis forces. The corresponding mo-
tions are strictly oriented in the radial directibthe platform is in the rest.
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Triple-mode resonant interactions

Let us suppose that the angular rate is smallﬂ(ze).~ 4 andd@/dr ~ u?, then the first-order

nonlinear approximation solution to Eq. (5.3) cansought as a resonant triad consisting of the

axisymmetric radial oscillation and a pair of qulagrmonic waves [66—68]:

Wr.8)=3. poA (T)expig, + iz, g)+Olur)+ ()
f (5.9)
wr,8)= > A (T)expig +mn® (r,¢) +O(u?r)+ (),

k=1

where Ak(T) (k 21_3) are the slowly varying complex wave amplitude <X ur is the slow

time scale);v(l) and w® denote nonresonant corrections supposed to befreecular terms in
order O(T); g=ng+wr,p =-ng+wr; ¢ =wr are the fast rotating phase(s) refers to
the complex conjugate of the preceding terms. Téguienciesw,, w,, w;, and the wave num-

bers + n satisfy both the dispersion relation (5.7) andft®ewing phase matching conditions
Wy =W+, + phw (5.10)

where A denotes a small phase matching detuning. The gedragrangian of the system un-

der consideration is given by the standard formula
_ 1 3 21T 21T 21T d d d
<L>_ o .[o .[o .[o Ldgdadg. (5.11)

Let us suppose that this one can be representdoaal series in .:
(L) = (L) + (L) + 2L )+

then the zero-order approximation produces theedsspn relation in the forme0> =0 [69].

This means that the ter(rh_1> describes a nontrivial nonlinear case within th&-brder nonlin-

ear approximation analysis. The corresponding aeekamiltonian of the system is following
[70]:

s alL) oL,
=3, elem, S,

Let the high-frequency mode of the triad be theswximetric oscillation at the frequency
«w, =1. This high-frequency radial motion is supposed ¢arbphase with a pair of secondary
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flexural modes with the wave numbetsn, traveling at the same frequencies= w, = w,,
close tow, /2 accordingly to the phase matching conditionsdp.1In this case, the average

Hamiltonian can be rewritten in more detail:
2 — — pE—
(H)=2Yw,(p, - p, |A[ + *[AAA, expliaaT) + AAA, expl-iaaT)). (5.12)
i=1

The truncated evolution equations within the foeter nonlinear approximation, generated by
the average Hamiltonian (5.12), are the following

dA _20(p, - p,)
e A - w(“ )AzASexp(quT)

dA, _20(p,-p,), __ i % A}
e P A, w(1+p2)A1A3exdlAa)T), (5.13)
dA _

T T AA, exg(—-iAwT),

where p, = (—1)"in(1+ gznz)/((1+ (s‘z)n2 —wz). These coefficients are equal by absolute values,

i.e., p=|p|=|p,|, due to the symmetry of the problem. Note thatd#ee under consideration

is associated with the principal parametric resoaaAfter the exchange of variables:

Azqw{ EQ J

Azzazex;{ (1+ )jOTQ() j (5.14)
A =a;,

Equations (5.13) can be rewritten as

d81 co(ll+ )aza3 expliaaT ),
da2 = a)(ll+ )éla3 expliAaT ), (5.15)
% = —ien’aa, exp(—-iAwT),

One can see that the equations (5.15) are indepteogen the angular velocity , of the base.

These equations are similar to the well-known Ekieematic equations describing the rotations
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of a body about a single fixed point, which canriegrated exactly in terms of the Jacobi ellip-
tic functions [8]. These equations describe thecated break-up instability over the high-
frequency mode of the triad with respect to smattyrbations from the two low-frequency sat-
ellites [66].

Now, let us exploit the axisymmetric mode in thegrias a “mediator” to pump the energy into
the driven flexural modes in the presence of endigsipation.

Forced motion of the resonant triad

Let the energy of dissipation be comparable withwlork of the external force exciting the axi-
symmetric mode in the system (5.3):

Q, =—2uN; Q, =-2u(mv-Qcosar), (5.16)

wherer is the damping rate Q stands for the magnitude of the external harmforice oscil-

lated at the given frequencg, which is close to that of the axisymmetric mode,,
w-1= o <<1, where o denotes a small detuning. In the absence of dajnpie average

Hamiltonian (5.12) is modified as it follows

(H)= 2|Za) (pJ - p, XA‘ +&n [A1A2A3 expliAaT )+ AAA, exr(—lAa)T)]

(5.17)
‘Q[A3 exp(—idT)+ A, expior) ]/2
This produces the evolution equations
d_AL__ ZQ(Q— pl) _ in®  — . _
dT =-nA + 1+ p2 A m AA exp(lAa)T),
d_AZ =— ZQ(EZ — pz) _ ien?  — . _
dT A, + 1+ p? A, 0)(1+ pz)AlAs eXF(IAwT)’ (5.18)

?T—AF = A, +iQexiaT)/2-ien? A A, exp(-iAwT),

* The damping coefficient can be different for eaabde of oscillation. The corresponding
modification of the model equations does not lead hew qualitative result.
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with allowances for an ad hoc extension relateithéadissipative functiomR , entering the set
(5.1). Analogously, after the exchange of varialffe$4), these evolution equations obtain the

following form

—aTi -na, - Z(—) a,a, expliAaT);
i‘z Z(—) aa, exgiAaT ); (5.19)

% = -na, +iQexp(idT)/2-iam*a,a, expg-iAwT),

After the exchange of varlablea exp(l ) this set (5.19) produces the following

equations resolved in the real-valued amplitudespases:

db a’bb, .

T b, + 1+ p? siny;

db, __ b,

qT /7b2 msnﬂﬂ

% = —njb, — en’bb, siny +Qsin(5|' —¢3)/2' (5.20)
d _ . =28 (02 (et + p2)p2 - b2)-b2b2 Jcosy + whb,QlL+ p?)codaT - ¢3)

dT 2w(1+ p?Job,b,

% = —en’bb, sing /b, + QcoddT - ¢,) /2,

where /(1) = ¢,(r) - #,(z) - #,(r) - AT is the generalized phase. It should be notedthfese

equations can be interpreted as a phenomenologéeralization of the evolution equations

(5.15) or a structural scheme of the object unkieistudy.

The stationary solutions to Eq. (5.19) consistnaf subsets:

2
bl = b2 =0 b3 :K(1+—pz)qa)’ (521)
a
and
241+ p*VK -1 2
bl:bZ:\/_ +p2 X b3:/7¢4)(1—+2p)’ (522)
a a
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where K = an’Q (4L + p?}7%¢”?) is the control parameter analogous to the Reynaldsber in
the hydrodynamics [71, 72]. The first stationary @21) is stable in the rangg< K < K’

where K* =1 denotes the critical value of the bifurcation nemtrhis stationary solution is to-
tally defined by linear properties of the dynamisgstem (5.3). In turn, at the poilt™, this
trivial stationary solution bifurcates, becausdasis of stability, and is changed by the new sta-
tionary state (5.22), which is stable onetas>1'". As the control parametef is increasing
further, the external source pumps the energy timolow-frequency flexural modes across the
high-frequency axisymmetric mode (Fig. 5.5). Thigkes an effective nonlinear mechanism of

energy transfer. The intensity of the low-frequefieyural modes increases with the numibey
while the amplitude of the high-frequency axisymmeetmode b, is saturated at the constant

level b, =/7a)(1+ pz)/énz. It is not difficult to verify that the system (®) has no any bifurca-

tion, if any low-frequency mode is subject to thedt resonant excitation.

When passing to the old variables of the probldma,dorresponding solution obtains the follow-

ing form

2

v(r,¢) = —4b, sin(y(r) - n¢)co{a)+ }‘(5+2ij} — 2b, sinar + O(,uzr),

v(r,¢) = -4ph, codw(r) - n¢)co{w+ ;_/(5+ AwDr +0O(ur)

(5.23)

4p

+p?

wherey(r) = N j;Q(c)dc is the precession rate.

" The system under consideration though being statmetheless is not Gurwitzian one, since
the phase of the precessing flexural mode is aitranpvalue. For instance, the following set of
phases:g, = -m/2+ 0T [2+AdT 12, ¢, =-m/2+ 0T [2+Aal 12, ¢, =-m/2+ 0T is appro-

priate as a solution. Though, the equality- 7  stibuld be always fixed.
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Fig. 5.5 Mode n = 7. The bifurcation diagramvy(=0.1, £ =0.01, x =0.45)

Typical frames of the wave precession, accordinglthese expressions, are shown in Fig. 5.6.

Here, the stiffnesg is tuned into the triple-wave resonance over gwesth flexural mode.

Two resonant triads are in phase

Let us suppose that the stiffness .increases. Mk&ns that at least one more triad can be in-
volved into the nonlinear resonant coupling. Irstb@se, the substitution to Eg. (5.3) has the fol-

lowing form

vr,8)=Y pA(T)expig + w(r,4)+0(ur)+ ()

5
k=1

(5.24)

5

wr,8)=>" A (T)expig, + m® (z,)+O(ur) + (+),

k=1

where Ak(T) (k:l_S) are the slowly varying complex amplitudes (the hiuge subset
{A, A, A} composes the first triad, whifgA,, A,, A} enters the second one); the wave num-

bers nand n, refer to the first and the second triad, corredspugly; @ =ng¢+wr,
@=-NP+wr, @ =wl, g =n@g+w,r, @ =-n,@+aw,r are the fast rotating phases.

Let the set of frequencidsy, w,, @} and the wave numbetsn, satisfy both the dispersion re-

lation (5.7) and the following phase matching ctiods

W, = +w, + pha, (5.25)
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where Aw, denotes a small phase matching detuning. AlIm@ss#ime conditions are valid for
the second set of frequencifgs,, w,, @, } :

W, =w, s+ A, . (5.26)

Figure 5.7 displays graphically the phase matcloimgditions when the system parameters are

specially tuned into the double triple-wave resasaover the modes number two and seven.

Fig. 5.6 The wave precession. Modal numimer 7. Solid lines refer to flexural mode, while
the dashes to the circumferential orpe=(Q.1, 11 =£=0.010437642324 =0.45, Q =0.085,
Q=0.1). The dotted radius indicates the rotationeSy .
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In this case, the corresponding average Hamiltoftiaky) may be modified as it follows

(H) = Ziia)j ([‘)j -p, XA].‘Z +enf[KIKZA3 exfiAwT)+ AAA, exd—iAa)lT)]+

+ ZiZZ:aJj ([‘)j - p, XAI. ‘2 +en? [RKSA% expiAw,T)+ A,AA, expl- iAa)zT)] -

- Q[A, expl-iaT) + A, expliaT )] /2

This one produces the evolution equations, ana®tmthe set (5.18):

d_A:—qu +_ZQ(F_)1_2p1)Al_ ienf . KzAs exp(iAa)lT);
at 1+|pj w\L+|py

dA, 20(p, - p,) ien? : _
TS e A AR eliAwT),
dT 1+|p2| a{(].+|p2| )

Z—?S = -nA, +iQexpidT)/2—-in? A A, exp—iAwT) - i AA exd-iAw,T) (5.27)
dA, 20(p, - p,) in? . _
G S TAG T AT AR exlidwT),
aT 1+|p4| w2(1+|p4| )

dA, 20(p; - ps) iz o SN
—= =NA s SN -—— 2 AA exdidwT);
dT 1+|p5| 0)2(].+|p5| )

Fig. 5.7 Low-frequency dispersion branch. Triple-wave ghamtching. The modes numbers

n, =7 andn, =2 are in phase with the axisymmetric radial osc¢dlai(;7=0.1, £ =0.0098,
Kk =1.25)

The stationary solutions to Eq. (5.19) consishoé¢ subsets:
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2
bl = b2 =0 b3 :M (5.28)

ml
a1+ P2 K -1 pa(is p?)
b =b, = p ;b = (5.29)
1 1

mz

/ 2 -
b, =b, =@ l;ri“Kz L b, =1l ei) (5.30)
2

where K, = en?Q /(21+ p? Jr?ww,) and K, = en2Q (21+ pZ Jr%w,w,) are the control parame-
ters corresponding to the first and second triagispectively. The first stationary set (5.28) is
stable in the rang@ < K, < K, , whereK, = ldenotes the critical value of the bifurcation num-
ber. This stationary solution is also defined Imgér properties of the dynamical system (5.3), as
in the case discussed above. Near the péinthe set (5.28), as it is expected, loses stalzlity

is changed by the new stationary state (5.29), ivhiguld be stable one &, >1. At the same
time, together with the parametkr,, the control parametef, increases up to its critical value
K., though the system has no any reaction. This miimtshe stationary set (5.30) is unstable
one, because the critical vall€, is reached at much more large magnitude of thereat force

Q in comparison with that of the valu€, (Fig. 5.8). The first triad (the precessing wavenn
ber n, =7) would always dominate under the second triad Whee numbem, = 2). There-
fore, the typical frames of the wave precessionldidae similar to those illustrated in Fig. 5.6.
So that one may conclude that the stiffnessan be effectively used to tune the gyro in the tr

ple-wave resonance.

1.0+

1.6
.44

0.2

Fig. 5.8 The critical force magnitude®” versus the wave number (17=0.1, £ =0.0098,
Kk =1.25)
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Resume

Long ago, in 1851, Foucault demonstrated that a@lydem could be used as a vibratory gyro.
The wave precession phenomenon caused by rotdtibimewalled cylinders and bells was first
discovered and analytically described by Bryan [58]is physical effect has inspired, in the
1960s, development of a thin-walled hemisphericdidsstate gyro. The fused-quartz hemi-
spherical resonator of the wave gyro is naturatijuated and sensed using modern MEMS-
technologies, following a concept of the rate indédgg sensor [54]. Gyro units based on resona-
tors with high Q-factors have achieved a signifigaarformance in the competition with their
laser analogs. Today, the related technologieean&ed within a lot of commercial projects

through the development of micromachined gyros.

One more type of wave excitation in a wave solatestgyro has been proposed in this study,
when tracing the breakup instability of the highefuency mode entering the triple-wave reso-
nant ensemble. This case combines simultaneousiiythe advantages of the positional and the
parametric types of wave excitation. It was shohat the equations governing the evolution of
the amplitude envelopes in the resonant triad,tevwritn a special nonstationary frame of refer-
ence, do not depend implicitly upon the angulape®y of the ring. The breakup instability of
the high-frequency axisymmetric mode in the reson@plet gives arise to slowly precessing
flexural waves in the presence of energy dissipa#ocharacteristic number as a dimensionless
combination of system parameters, including themitade of the periodic external force, damp-
ing coefficient, and the nonlinearity, are reveal€dis number controls the bifurcation of oscil-
latory patterns, when the system passes throughtairc critical value, analogously to the Rey-
nolds number in the hydrodynamics. Tracing thegoast of the precessing flexural modes, one
can be judges on the angular position of the mgating in the absolute space. Note that the
nonlinear model of the gyro described in this stoelyuires no any extremely high Q-factor of
the resonator, or some feedback control, as whlk odel assumes that the gyro can be tuned
in the given precessing regime by controlling théness between the ring resonator and the ro-

tating platform.
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SELF-EXITED RESONANT BOLOMETER

Recent cosmology experiments have revealed anemated expansion of the Universe and ani-
sotropies in the Cosmic Microwave Background radimtThere are known several cosmology
instruments such as balloon telescope BOOMERan@y@O, B-POL etc., for detecting relict

Big Bang waves. The experimental observations respovel challenges in theoretical scenarios
based on accurate measurements using modern eiftsétige detectors. The resonant bolometer,
proposed as a mathematical model in the preseswt psgems to be one of such promising tools.
Moreover, analogous superconducting devices exbdrte promising routes to quantum com-

putations in the recent years.

We study a model of the resonant bolometer comgethe electromagnetic radiation energy into
thermal one with the help of a heat sensor integratto a high-quality resonant circuit. Self-

excited oscillations in the resonant circuit arpmurted by a low-noise periodic generator based
on physical properties of a Josephson junctioneét lsensor, implemented into the resonant cir-
cuit, passes from the superconducting state toe$istive phase under the incoming pulse. The
operating temperature of all the sensitive partthefbolometer is set slightly below the super-
conducting edge. The measurement procedure iade the amplitude and phase modulation at

the absorption of the incoming infrared radiatidhe sensitivity of this sensor at conventional
material parameters would be evaluated@¥[W by fhe power input.

The main objective of this chapter is to provide omore idea for the accurate identification of a
weak infrared radiation. From a viewpoint of thedhy oscillations, the self-exited resonant
bolometer can be treated as a self-exited osaijlatgstem possessing more than two degrees of
freedom. In spite of some complexity in a theoadtaescription, the numerical modeling leads
to a conclusion that this system is extremely sampince any chaotic motion, inherent in com-
plex nonlinear dynamical systems, has not beenrabde/et. Point out that this is a fairly rare
case in the theory of oscillations. It means tbatthe one hand, we have got a simple self-exited
system characterized by regular dynamics, whilegherother hand, the model of the self-excited
resonant bolometer possesses a negative feedbaclk greates most optimal preconditions for
a quickest cooling of the sensor. This would lead technical result which improves the sensi-
tivity, accuracy and stability by reducing the maasnent errors up to the level limited by ther-
mal fluctuations. The latter circumstance creamsgectives for more efficient identification of

unknown parameters in the incoming electromagmati@@tion.
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Voltage-temperature circuits

We should note that any conventional bolometer atnadways operates using a DC biasing.
This represents almost linear systems investigayeiols of spectral methods. Therefore, there
is no place to apply the modern theory of nonlinesuoillations. Probably this is caused, on the
one hand, by an attractive simplicity of sensorkjlay on the other hand, — by advances in
nanotechnology, trying to modify the existing madap to ideal limits predicted by the noise
theory. The recent actual studies [73—77] deal whih periodically forced models of sensors,
based on approaches inherent in nonlinear res@yatems. Point out that the periodical pump-
ing is modeled therein just as trigopnometric fumaesi. Although, we should remember that this is
power source of additional noise in practice, iehéin any conventional generator of periodical
electric signals. Here, we try to overcome thisaleficy by combining the DC biasing with the
periodical pumping due to the self excitation meck@. Finally, recent developments in the
nanotechnology allow supposing that the dynamiealssrs would really take place of tradi-

tional sensors.

First, we consider the dynamics of a conventiordbimeter represented by an electrically bi-
ased Thévenin’s circuit. This circuit, connectedsamies, consists of a bias voltadg, an ordi-
nary resistorr, an inductance. and a transition-edge-sensor (TES). Changes ipdgature
result in changes of the current flowing througk FES-sensor, playing the role of the ther-

mometer whose resistance depends upon the temqaefatiAt low temperatures, the electrical
resistance,o(T) is zero. Near the critical temperatufg, the resistance increases together with

the temperature. At ambient temperatures, the Td8Ses has a normal resistanpg. The in-

ductancelL includes, together with a parasitic one, the ita@uce of a SQUID interferometer.

The electrical capacitanaeis neglected in this model.

Let the circuit be biased by nearly constant vaiaaf least, at the frequencies lower than the
characteristic reciprocal tim@! + ,0)/ L. This also assumes that the resistangs small enough

compared to the resistangsg, otherwise the current biasing would be suitab&tedad the volt-

age biadJ, . Therefore, this circuit is described by the fallog equation:
L= =U, = j(r +p(T)) (6.1)

where | = j(t) is the currentt denotes the time. It is supposed that the TESesessntegrated
with the absorber. The absorber cools into a thetatdaving the temperatuiig — AT , where
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AT is a small temperature detuning, slightly under $ensor phase-transition edge character-
ized by the valuel,. The Joule heat elevates the temperature of he&hrES-sensor and ab-
sorber, some above the bath temperature, and aissithe energy of the conductivity electrons.
There is always a finite voltage drop in the dii@ctof the current flow because of the electrical
resistance. The useful heating is inspired by micerning power, described here as a narrow ex-

ternal pulseP(t), and approximated as the Dirac-type function hgnarsmall dispersion in the

time scale. Thus, the governing equation of thentlaécircuit is the following

CT =R(T)j?-Q(T - T, +AT)+P(t), (6.2)

where C = W is the heat capacityy( stands for the volumetric heat capaciy;is the volume

of the absorber)QQ denotes the thermal conductivity characterizirgpaling rate into the ther-

mostat.

Conductivity electrons are scattered in a randoshita by imperfections in material, and take
part in the energy exchange between thermal phoridnss, the energy is converted into heat,
accordingly the second law of thermodynamics. Atbimt temperatures, the resistance is
caused by inelastic collisions between electromstaaermal phonons, while the thermal phonons
are almost absent at lower temperatures. As thpdrature is decreased, the resistance also de-
creases, and the resistance takes place due tecalftering on impurities, in general. Conse-
qguently, the clearance of materials is worth fag tolometer sensitivity. The bolometer effi-
ciency depends also upon the volume, not only upenquality of a material of the absorber.
Naturally, the geometry of the absorber should ®Wbest energy resolution. On the one hand,
the absorber design should tend to decrease thecapacity, while on the other hand, the in-
creasing heat conductivity facilitate a coolingtbé absorber together with decreasing the re-

laxation time.

The electrical resistance at ambient temperatsreaused by the electron-phonon coupling. The
electrons are subject to many random collision& wiermal phonons. As a result, the random
exchange of energy between the electric currenttlaadhermal reservoir is experienced. In the
absence of the net current, the electron gas leasatime temperature as the gas of thermal pho-
nons. Consequently, the fluctuations are zero sraye, because the system is in the equilib-
rium. These fluctuations appear as electric naiseonductors. There is a fundamental relation-
ship between the mean-square noise voltage andl¢btrical resistance at the given tempera-

ture:
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(U[) = 4 TRAf

where k, =1.3805910%|m?kg/ s’K | is the Boltzmann constanT, is the temperature of the
resistorR; Af denotes the frequency bandwidth. The mean noikagedJ is zero. This noise,
called as the Johnson noise [78, 79], representgdinary “white noise”. Its intensity directly
depends upon the temperature. Naturally, the r@abrwould be somewhat larger than the fun-
damental Johnson noise because of variety of phlysifects, such as a tunneling of electrons or

random magnet flux in a superconductor, etc.

Example
Let us consider the set of equations just discuabede:

La =U, - (o(T)+r)j; Vy((jj—-: =p(T)j?-Q(T - T, + AT) + P(t). (6.3)

Here p(T) = ,oo(1+ g Tl A)_l is the TES-sensor resistance, characterized theisesistance at
the normal statep,; A characterizes the rate of the phase transitiondsst the normal and su-
perconductive statesP(t)=P,sec(t —t,)/D) is the incoming power. Let us suppose that
A= 0.5[K]; D= 0.5[5]; t, = 25[3] (Fig. 6.1). The other system parameters are thewing:

T, =3.5[K] ;AT =0.3[K]; Q=10"[W/K]; L=0.5[H]; y=5x107sW/Km']; r =107[Q];

0, =10[Q]; V =10°[m’].

The initial conditions to the correspondent Cauphgblem (6.3) are defined from the equilib-
rium:

u, - (po (1+ e—4(T—T0)/A)_1 +I‘)j =0 p, (1+ e—4(T—T0)/A)—1 J 2 —Q(T -7, +AT) -0

Let the voltage be a given constauf = 1.O><1O‘8[V] at the initial temperaturd (0) = 3.2[K],
then the stationary current should be equaj(f) = 6.0x10°[A].

After the transform:t =(L/p)r; j(t)=(U,/p)3(z); T(t) = (T, -AT)e(r), the set (6.3) can be

expressed in terms of new dimensionless coordinates

% =1-(p(©)+ N/ p % - vl;_/p( ;((??J_g;) * (Toﬁ_(TA)T) -Q(e —1)} (6.4)
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where P(r) = P, sec{% (r-pto! L)j and p(0) = plL+ e (-aTlolr e .

Let us consider a perturbed version of Eq. (6.Ih@resistive state:

LZJ—U —j(r+0)+ IU expfat + ¢,)dw,

where U, is a contribution of the voltage noise at the giyeequencya; @, are arbitrary

phases.

19 1ox 107%

0.8+ 8% 10710

0.6 6 % 10°10

riTy[el 1 PO WT

0.4 4.3 10710+

0.2 % w1010

L

T T T 1 0 T T T T 1
0 10 20 30 40 50

! l a f b
Fig. 6.1 The resistance the TES sensor vs. the temperajuaaddhe incoming power vs. the
time (b)

[
s
=

Therefore, a spectral component of the current neigxpressed as,, :Uw/(r +,0+iwL). To

define the output noise, one must integrate thigtion over the total frequency range. The

mean square of the total random current reads

2

1 % ey 17 |U|da) _ AkoTAf
_[JJ“’|d 2 Y (r+ p) rip ’

or, that is the same

2k,T _ Ak TAf
L r+p
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Here Af =(r + p)/2L is the noise bandwidth, expressed in Hertz. Théams that the total volt-
age mean squaréU|2> =4k, T(R+r)Af is evaluated a <|U|2> ~19x10™V], in our above

numerical example. Thus, the corresponding noisewaith would be abouEB[Hz].

Moreover, the temperature quctuatio<1§|2> =kg,T?/Vy take place in any small body possess-

ing the thermal capacit =Vy at the temperatur@ . This fundamental contribution always
limits a best obtainable resolution by noise causgethtrinsic thermal fluctuations. This one is

estimated as almost negligible vaIVé(H|2> = 1.8><10‘8[K], in our numerical example. Thus, the

set of the modified equations (6.3) reads as libes

9, ~(ofr ))& = ol -l )+ Pl

where &(t)=7,(t) \/4kT ( (H)+r)Af and &,(t) =7,(th/ksT?(t)/Vy are independent random
functions. The perturbed temperatuFeis resulted after the transfor(t) — T(t)+&,(t). The

mean values of the function§(t) and &,(t) are zeroes and possess the Dirac function correla-

tions. The result of the numerical experiment, shawFig. 6.2, explains roughly the basic noise
effect on the sensitivity of the bolometer (the magle of the incoming poweP, is scanned

from 10 [w] to 10 [w]).

P=107w] p=10"""w

SA6 10 Ml

545

5.424

T - T T T 1 T T T T T 1
100 200 300 400 500 RN 100 200 300 400 500 600
T T
a b
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Fig. 6.2 The current and temperature across the TES-seastite dimensionless time. The
regular component of the response, depicted byt iogs, becomes almost undistinguished at
the current noise background together with deangasie incoming power signal — (a, b, ¢). The
temperature change by scanning the incoming powe) —

Van der Pol generator with a TES-sensor

Van der Pol generator represents a classic modakitheory of nonlinear oscillations, in phys-
ics, electronics, biology, neurology, sociologyg.ethe governing equation has been studied
over wide parameter regimes, beginning from quasiAlonic patterns to relaxation oscillations.
Van der Pol generator is a simplest self-exitedesgyshat may be modified to investigate much

more complicated nonlinear systems.

Let the electrical circuit of a bolometer is cotsig with the van der Pol generator, though the
TES sensor is used there instead of the normatoesiThen the governing equations can be

written as it follows

Lﬂ+q/c+pj :—s(qz—d); a9 i
dt dt (6.5)
yS = At)-Qlr =T, +aT)+ P()

Thus, the electric circuit consists of a resistff ) = ,00(1+ e“‘(T‘TO)’A)_l possessing superconduc-
tive properties at low temperatures beneath thaeev@); an inductancel; a capacitorc; all
connected in series. The parameterand d, inherent in any van-der-Pol generator, are respec
tive for a self-excited biasing. The equation disieg the heat circuit is the same as described in

the previous sections.
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The dynamical variables of the system are the teatpe of the TES-sensd'r(t); the current

flowing through this onej (t) evolved in the time. The TES-sensor plays as the thermometer.

Changes in the temperature result in the evolutioine amplitude envelope of the current, un-
der the incoming poweP(t) = P, sec(t —t,)/ D). The inductancé. is supposed to include that

of a SQUID caoil, for measurements.

After the transfer from the actual variables to fwar coordinatesn(t)= Alt)sin(at + #(t));
j(t) = cA(t)codat + #(t), and the averaging over the fast rotating phasgs,(6.5) are rear-

ranged into the following form

A=-Na(p-£5)+en?|/8L; =0
T =[pa?A? QT -T, +AT)+ P{)|/ W,

where w=1/+/cL is the frequency of the electric circuit in thesabce of resistance and excita-

tion.

Let us suppose that that the normal resistan@ge lenough, i.ep, > £0. If the initial value of
the amplitude is equal to 0 @/J , then the amplitudé\(r) remains the same for all the time in

the absolute absence of perturbations. Howevaes, well known that the stationary solution
A7) =0 exhibits unstable properties at~0 (the superconductive state), while the same trivia
state becomes stable one at the normal resistarcg, .

At the superconducting state, the stationary anmbdit of oscillations is saturated, i.e.,
Alt)= 2./ . At the timet =t,, the resistop, under the incoming poweP(t), passes from the

superconducting statgg  ~ @ the resistive phas@ ~ p,. Let us suppose that the phase transi-

tion between the superconducting and the resistiaes of the system is performed beginning
from the pointt =t,. Then the amplitude would relax beginning from wadue 20, and al-

most to zero, following the time history

a(r)= 2/, — 5 expl- (o, — £0)(1 ~1,) 12N
\/po - eXF(_ (po - 55)(1' - to))£5 '

Some definite timeAt is necessary to heat and then to cool the absapbty the superconduc-
tive temperature. After the absorption of the inaampower, the resistop returns from the
resistive state to the initial stable stationargeseonducting state, and the amplitude evolves ac-

cordingly to the following law
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2exp(ed(r + At —t,) /2 dalt,)

)= oot s a0 D) 1 40

The locus between the curvafr) andb(r), defined by the equatioa(r) = b(r), at some point
t=t,, defines an approximate solution to the problenthm form of the following piecewise
function, A(r)={a(r), r<t;b(r), r=t}, shown in Fig. 6.3. Here, the system parameters ar
selected in arbitrary unit§f, = 35AT =01, P, =107, A= 005, D= 05, y =005, V =1,
Q=0035, L=1, p=08, =1, 6= 001 ¢ = 0035.

One can conclude that the stable stationary solusozero at the resistive state, &= , 0
while the stationary amplitude would be equal Ac= 2.0 at the superconducting state. The
time interval, defining the transition between #héwo states in the system, is governed by the

following heat balance equation

—QT-T)/ W, 1<t
T =1 ot (r) - QT -l + PRI W, &> 72t
-Q(T-T,)/w; 1=t

This is a linear nonautonomous equation which @aedsily integrated (Fig. 6.4).

06—

0.5

0.4

0.1

Fig. 6.3 Amplitude envelope vs. time in a comparison betwthe exact (solid line) and ap-
proximate solutions (dotted and dash lines)
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Fig. 6.4 Temperature vs. time

Figures 6.3 and 6.4 explain that the single unéefiparameter of the problem is the time inter-
val of absorptionAt =t, —t,. This one can be defined experimentally using abiovmulae by

solving the inverse problem.

Example

Let the realistic system parameters be the follgwif, = 3[K], AT = 01[K], P, =10™°[w],
A=005K|, D=035s|, y=05]sw/Km’|, Vv=10%"|m}|, Q=10"w/K],
L =25x10"°[H], p=10"[Q], c= 095x10°[F], 5= 09|c?|, £ = 035x10™°|Q/C?|.

After the transformt =~/cLr; T(t)=(T, -AT)o(r); qlt)=~ox(r); i(t)=~/ay(r)/+/cL, Eq.

(6.5) can be rewritten as

%:
dr
% = —x—,b(@)%y+£5%(y—x2);

do_  pe)y’ _Qe-1, P
dr VpWel(T,-AT)  Vy VYT, -AT)

where  P(r)= P, sect{VcLz ~t, )/ D)+ 2P, sec{ycLr -t,)/ D) (t, =18[s] and t, =57[s]);
p(0) = plL+ e oamelmia |t (Eig 6 5)
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Fig. 6.5 The resistance of the sensor vs. the temper@yréhe incoming power vs. the time (b)
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Fig. 6.6 The time history: (a) — charge; (b) — current;{¢emperature
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Fig. 6.7 Perturbed limit cycle

In our numerical example, results of the numengsgderiment are shown in Fig. 6.6 and Fig. 6.7.
The root of voltage mean square is evaluate%/<4t§|2> = 1.6><10‘16[V], while that of the tem-

perature fluctuations is abokﬁ|€|2> ~ 28x10°[K].

The heart of any Van der Pol generator is a serdiector. Any traditional semiconductor pro-
duces large noise at ambient temperatures, and pkagn isolator near the absolute zero. There-
fore, we should look for other self-excitation maglsms to achieve a required accuracy in the

weak incoming power detection.

Josephson-type generator loaded in parallel to tkeonant RLC-circuit

Consider a Josephson junction biased by a conB@rdurrenti . Let us neglect the heat effects,

then the equations of the Josephson generatios hroiel [80—82]:

Cﬁ’+l+\]sin¢:i; %:EI
dt p dt n

(6.6)
Here v(t) is the voltage across the contagf}) is the Josephson phasg;denotes the critical

current; e stands for the absolute value of the electrongshdr is the Planck's constant, and
p are the capacitance and junction resistance, cégply. There is no generation of oscillations

provided that the current flow through the Josephsaction is less than its critical value, i.e.,
i1 <J [83, 84]. In this case, the stationary value @& #osephson transition phagg is deter-

mined from the following simple equatiohsing, =i. The generation occurs when the current
exceeds the critical value, i.e> J .
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Let a high-quality RLC-circuit be connected in pklato the Josephson junction. The system
also operates by applying a DC bias (Fig. 6.8). §jmabol JJ denotes the Josephson junction in

this figure. The equations of Josephson oscillatere modified as it follows:

Cﬂl+1+\]sin¢ =i- j; %:EI;

dt p dt 7

(o |l I n n
VTESI_TESE =1 Z(t) _VTESZTES[T - (To - AT) ];
4 (6.7)

VJJrJJ E = (i - j)V_VJJZJJ [en _(To _AT)n];
|ﬂ ﬂ+rjzv; %:J

dt ¢ dt

Here V.. is the volume of the absorber integrated with theat-sensitive element;
Mes = Mes(T) is the specific heat capacity of the absort®g, stands for the coefficient of

thermal conductivity;n =5 T(t) is the temperature of the heat-sensitive elem&nt; AT

denotes the constant temperature of the coolakt #@&h is the temperature set some below the
phase transition edge. The parameters of the smpaucting junction are the following/,; is

the volume of the junctionf,, =T ,,(®) stands for the specific heat capacity of the jiomgt
5 ,, is the coefficient of thermal conductivit@(t) is the junction temperature, whitgt) and
j(t), respectively, are the charge and current flowugh the resonant circuit with typical pa-
rameters of an inductande a capacitance, and a resistance. All the remaining symbols are

the same as above.

The critical current of the junction in the viciiof the critical temperature is defined by the

formulae [85, 86]:
3= ntanf| -2 | a=35kT , 1--2-.
2ep k;© ' T, 1

18 Point out that the electron-phonon coupling haanbmeasured experimentally in many mate-
rials. The coupling power is approximated by thdofeing phenomenological dependence

P., =>V(T" -T') Heren is integer number, about four or fiv;~10° WK >m?| is the con-
stant; T is the temperature of the electron g&s; is the temperature of the phonon gas in the

thermostat, and/ stands for the volume in which the electron-phonounpling occurs. Thus,
the electron-phonon coupling determines the coggtween the bolometer and the cold bath.
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Here A is the energy gap of the superconductor as thetibkmof the temperatur@(t); T,y Is

the value of the critical temperaturie, denotes the Boltzmann constant. To obtain therdepe

ence of the critical currend upon the temperatur®(t), one should solve a somewhat difficult

integral equation [84]. However, the behavior a$ $olution is very simple (Fig. 6.9); we know;
if ©@=0, then 2A/KT,,; = 352, else if@>T_,,, thenA = 0( i.e., the junction resistance is

converted into a standard constant vafuat the ambient temperatures).

oc() 3 f

I
Fig. 6.8 Josephson generator connected in parallel tRLi@& circuit

0.8+

0.6+

0.4+

Fig. 6.9 The energy gap versus temperature (arbitrargunit

Typical temperature patterns of the resistaneeR(T) and the heat capacify.(T) of the ab-

sorber are schematically plotted in Fig. 6.10,rimteary units.
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Fig. 6.10 Typical temperature dependences (a — resistiveeglerh — heat capacity)

The temperature dependence of the specific heatmayproximated by the formula [80]:

nyJTc,JJ eXd_ 1'76TC,JJ /O)’ O = TC,JJ; (6 8)
yJJel G) >Tc,JJ' .

(0]
The valuey is determined from the following condition

C..— VT
es yJJ cJJ - 143 (69)
Vs Teas

Here c., is the heat coefficient in the vicinity of the smponducting edge, whilg,, denotes the
heat coefficient at ambient temperaturgs;, denotes the critical temperature. The formula de-
scribing the function™,¢(T) is completely analogous to the above expressitiosigh Teres IS

used instead the temperatuig,, and so on, all the related indexes are changeaeH).

Let us suppose that the bolometer runs in theretiene. We neglect the temperature effects. An

approximate analytical solution to Eq. (6.7) maydggresented in the form

j(t)=Qa, codQt +a); qlt)=cio+a,sin(Qt+a);

v(t)=ip+Qa,codQt+8), #t)=Qt+ 2ea, Si“h(Qt + ﬂ). (6.10)

Here Q = 2eip/n denotes the frequency of the Josephson generetioe iabsence of the resonant

circuit. The phases and amplitudes are defined tranfollowing set of equations (solutions

these equations tends to be more accurafle<ati ):
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0%, sin()+ Qa, coda) , Qa, codf) _ o

C Cp
_ 0%, cod)- Qa,sinfa) _Qa,sin(B) , J _ o
2 © Cp o C (6.11)
_0%a coda)- rQa, Ism(a) . alclc():s(a) L Qa, Tln(ﬁ) o
rQa, coda) 0%a, sin(a)- Qa, codp) , asin(a) _ 0

I I Ic

Let us assume that the generation frequeficis close to the natural frequency of the resonant
circuit w=1/+/Ic . The solutions to the set (6.11) demonstrate mayfppehavior of dynamical
systems near the resonance. Figure 6.11 displaysingerical example at the frequency
Q = 0254x10"'[HZ], provided that the resistance,=1.16x10°[Q , ib small enough. The
points in this figure correspond to the parameggrand a . The dimensionless frequency detun-
ing is normalized to unity with respect to the memat frequencyQ . The dimensionless ampli-
tude a is normalized by the valueip =1.295x10"°[C , Jwhile the amplitudea, — by
ip/Q=3.291x10"°[Wh. The parameters of the numerical estimation ae fthlowing:

J =8.363x10°[A] ; ¢=1.549x10"[F]; i =8.363x10°[A] ; r =1.16x10°[Q]; | =10™[m];

0 =7.872x10"[Q]; C =14x10"[F].

pey

w o

Q a
b
Fig. 6.11 Phase and amplitude response (a — the paraneetarsl 5 ; b — the parameterg
and a,)

As one can see, the resonant excitation alterdisggntly the phase and amplitude dependences
at small variations near the resonant peairitQ =1, so that this model leads us to an idea of a

highly sensitive sensor.
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First, consider the time history of the processegoned by Eq. (6.7) at the initial conditions

#(0)=0; v(0)=0; j(0)=0; T(0)=T,-AT ; ©(0)=T, -AT .

The calculation uses the dimensionless variables:
r=at; G(r)=jt)/i; o(r)=9(t); Q(r)=qlt)/iec; G(r)=2evt)/ hw.

Specific numerical parameters are shown in theelédl. These are taken as typically encoun-
tered ones from the listed bibliography in an atieto rely already achieved level in technolo-

gies.

Table 6.1 The idle sensor parameters with the constantlsemstance

J =8.363x10° [A] ; Ve =107°[m*];

To =Tges =0.27[K] ; T, ,, =0.351K] r =1.16x10°[Q] ;

AT =0.03K]; S es = 25x10° W/ K°m?];
c=1.549%10"[F]; Vres = 69%10°[Ws/ K *m®];
i =8.363x10°[A] ; V,, =107°[m®];

| =10™[H]; s, = 25x10°[W/K°m’];
0 =7.872x10"[Q]; V5, = 69%x107°[Ws/ K*m®].
C =14x10"[F];

The oscillatory patterns are shown in Fig. 6.12.
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Fig. 6.12 Dynamical response (a — voltage in the junctibr;temperature of the Josephson

junction; ¢ — charge in the RLC—circuit; d — cutrenthe RLC—circuit).

Sensor Model

As we can trace, the dynamical system represethi@derahertz generator integrated with the

resonant RLC—circuit is extremely sensitive to @emin the resistance, since the circuit is tuned

into the resonance with the generator. This prgperused to identify small thermal changes.

Figure 6.13 shows a scheme of the sensor with Efe-Type resistor included in the oscillatory

circuit parallel to the generator. The magnetix fhear the inductive element may be measured

with the help of a quantum interferometer.

—_—_— 0

oc() 35 8 TES

W

I
Fig. 6.13 Self-excited resonant bolometer

The following set is derived by modifying Eqg. (6. Making allowances for the resistance of

TES—type:
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Cﬂ+1+Jsin¢:i—j; %:E’;
dt p

dt h
|ﬂ+g+R(T)j:\/; %:j;
dt c dt (612)
dT . n n
VTESI—TES(T)E = R(T)J 2 _VTESZTES[T - (To _AT) ]+ P(t);
o . . n n
VJJ rJJ (e)a = (' - J)V_VJJZJJ [G - (To _AT) ]

Here P(t) is the external powerAt is the characteristic pulse duration over the fifftee re-

maining notations are the same. In contrast to In@dg), the set (6.12) cannot be subject to ef-
fective analytical study. In this case one may telywumerical calculation only. In order to test

the dynamics governed by the model (6.12), we bheesystem parameters from Table 6.2. The

additional parameters are the following: =11.6[Q]; maxP)=10"[W]; g—_FI_zIR:SO;

At =1077g].

The results are presented in Fig. 6.14 (the samert§ionless variables). Obviously, the effects
of absorption of the external pulse can be cleablserved due to dynamical changes in the am-
plitude and phase. In particular, as we can obséneetime point correspondent to the pulse ab-
sorption is characterized by almost zeros in threectt and voltage. This means that the model of
the self-excited resonant bolometer possessesebgftbctive feedback which creates most op-

timal preconditions for a quickest sensor cooling.
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Fig. 6.14 Bolometer dynamics (a — Josephson phase; b -eratupe of the resistive element
over the time; ¢ — temperature of the junction;wbkage; e — charge; f — current). The pulse
comes at the time of 200 dimensionless units

This would lead to a technical result which shaolgrove the sensitivity, accuracy and stability
of the sensor by reducing the measurement errots tipe level restricted by thermal fluctua-

tions.

Finally, the physical processes in the self-excresbnant bolometer may be consumed by the
following elementary acts. The low-noise high-fregay generator of oscillations is represented
by a terahertz Josephson junction, which is lodnethe resonant RLC-circuit in parallel. The
inductive element of the circuit allows for an aate readout from the sensor with the help of a
guantum interferometer. The frequency of electsciltations is generated in the circuit at the

same frequency as that of emitted electromagneiivew in the case of the critical biasing. Let
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the resonant circuit be tuned into the resonandbd thie Josephson generator, and then the
maximal loading is provided. This resonance is aguanied by decreasing in the amplitude of
oscillations in the generator, while the amplitudereases in the circuit at the same time. The
resonance creates stationary self-excited osajlategimes, which exhibit stable patterns at
terahertz frequencies. If the sensor is out ofidabecause of the absorption of the external
pulse, then the negative feedback reacts extrequetkly to return the sensor to its original un-
perturbed state (Fig. 6.14).

Fig. 6.15 Bolometer dynamics in the phase-space crossecti

Noise-equivalent power

If the temperature of the physical body is abowedhsolute zero, then thermal fluctuations ap-
pear always [87, 88]. The main objective is thasthfluctuations have to be small compared to
the useful signal. The noise-equivalent power a@uthé electron scattering on phonons is esti-

mated by the following formulae:

NER.. = 20k Ve e °(t); NER, = 20k.V,,Z ,0°(t). (6.13)

The estimations of noise generated by the eledtattering reads:

NEV, = 4rk,T(t); NEV, =40k 0(t). (6.14)

The evaluation of noise due to the dynamical regdaf capacitors is the following:
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NV, =k, T(t)/c; NV, =k.0(t)/C. (6.15)

Thus, the noise evaluation for the example presleove would be roughly:
NEPR.. = 2.425x10%[W?/Hz]; NEP, =9.933*10°*[W?/Hz]; NEV, =5.381x10%[V?/HZ];
NEV, =1.855x10%°[V?/Hz]; NV, =7.486x10"°[V?]; NV, =3.313x10"°[V?].

Let us consider the dimensionless transient proicege bolometer, related to the time history

shown in the previous figures. This the time raisgabout 100 units, i.e., the physical time in-
terval is about2.473x10° § ](Fig 6.6). Thus, the frequency bandwidthg , can be estimated

as 4.044x10°[Hz]. Alternatively, the noise generated due to théaaege of capacitors is not a
new kind of noise, sincdEV,Aw~ NV, and NEV,Aw~ NV, accordingly to the spectral the-

ory. Therefore, the total noise should be addlif [W in the power. Since the critical noise has

the same order as the power of the external piserelated to the numerical example, we have
evaluated a threshold of sensitivity of the boloeneb infrared signals. Finally, the interested

reader can trace in detail all the numerical exaspked in this study [89].

Resume

The reliability of the mathematical model descrotlynamical regimes in the self-exited reso-
nant bolometer may be confirmed by many resentesses in nhanotechnologies, referred in the
text and references in a part. In particular, thept US8063369 uses several interconnected in a
cascade TES-type sensors providing a very shapomss of the bolometer. The main difference
of this prototype from the self-excited resonanibbeeter is that a constant bias voltage is used
to power the cell of detectors. Note that the camisbias, either the current or voltage, would
naturally limit the effectiveness of the feedbadkiat should promote a rapid cooling of the de-
tector up to the operating point. Unlike this, gedf-exited resonant bolometer has a variable bi-
asing, both in the current and voltage. This suggpsome fruitful conditions for the feedback

properties to reduce the time constant of the betem

Consider the effectiveness of resonant circuithéexcising design of bolometers. A sensitive
element in the resonant circuit may play the raleaapacitor or inductor. An example can be
found in the patent US6534767. It is well knowntttee capacitance or inductance both depend
on the ambient temperature, which affects changekd impedance. This causes variations of
the resonant frequency which may be registereditfirahe phase-locked loops. The main defi-

ciency of such a prototype is that it is designsithgi ferroelastic materials, which able to exhibit
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the desirable qualities at relatively high tempemed only and cannot provide accurate meas-

urements, because of thermal noise.

A low-noise high-frequency generator of oscillagsom the resonant bolometer can be repre-
sented by a terahertz Josephson junction, as gtechedidate, which is loaded by the resonant
RLC-circuit in parallel [90]. The junction, at tlezitical biasing, generates a localized electro-
magnetic radiation. The frequency of electric dattdns in the circuit occurs at the same fre-

guency as the frequency of the emitted electromagnaves. Then the resonant circuit is tuned
into the resonance with the Josephson generafmrotade its maximal loading. The resonance

creates the stationary self-excited oscillatoryimeg, which are stable at terahertz frequencies.
When the sensor is out of balance, because oftibergtion of the external pulse, the negative
feedback reacts extremely quickly to return theseemo its original unperturbed state. The in-

ductive element of the circuit allows for an acterseadout from the sensor with the help of a
guantum interferometer. In particular, the pate®8026487 describes a superconducting tun-
able coherent terahertz generator based on theaetsooupling between the Josephson oscilla-
tions and the fundamental mode of the cavity reswnahich leads to a powerful terahertz ra-

diation.

Note that the self-excited resonant bolometer s a mesoscopic device. Then its efficiency
is restricted by the geometrical dimensions of giigtem. The mathematical description repre-
sented in the chapter is based on the semi-clagshgaical methods. Let the dimensions de-
crease with the increasing the purity of a sensaterral, then the bolometer turns into a typical
guantum system. It is possible that perspective@eeslements can be composed of monatomic
metallic layers covered by graphene sheets. Thiddvensure aninimizationof the heat capac-
ity, as well as graphene sheets, accordingly tetaie-of-the-art, exhibit extremely high thermal
properties which would supportmaaximizationof the thermal conductivity. To implement such
elements in the bolometer we may pay attentionewm imtercalation technologies [91]. NEMS
terahertz resonators are also of higher intereit [Bhe permanent evolution of nanotechnolo-
gies would provide the appearance of very rapid effidient devices such as quanta counters.
Such devices would manifest themselves as awfulgntum objects. However, their manufac-

turing, but not only the mathematical descriptiseems to be not so easy [93].
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RESONANT ENSEMBLES OF STATIONARY QUASI-
HARMONIC WAVES IN A ONE-DIMENSIONAL ANHARMONIC
CHAIN

We study nonlinear resonant interactions betweeasiguarmonic waves in a one-dimensional
anharmonic chain, based on a simple mathematicdehwriginated from the geometry of cen-
tral and noncentral interactions between partich)in the so-called harmonic approximation.
The investigation is carried out by standard asytipimethods of the nonlinear dynamics. Tri-
ple-wave resonant ensembles are revealed withirfirtgteorder approximation analysis. These
triads are formed both due to the quadratic noahiye of the system, and due to satisfying the
phase-matching conditions. The resonant triadsbeaaf three different types only, though the
each resonant triad consists necessarily of orgitiatinal and two transversal wave modes. In
turn, these resonant triads can be nonlinearlyleduf his leads to a creation of resonant chains
assembled from resonant triads of three differgpég, having spectral scales in the general
case. Cascade processes of energy exchange beheeastillatory modes are characterized not
only by complex chaotic dynamics inherent in noagnable Hamiltonian dynamical systems,
but also by the presence of multi-mode stationaofions, which are stable by the Lyapunov
criterion. In an ideal crystal structure such sitadiry coherent wave ensembles can significantly
influence upon heat properties of the system, eslheat low temperatures. This is one more

relevance of their theoretical and experimentadyin micromechanics.

The growing researcher interest in various low-disie@nal objects of micromechanics, possess-
ing a spatially periodic structure, inspires théiced and experimental investigations in the field
of nonlinear acoustics, based even on well-knowdetsoof chains and lattices of material parti-

cles.

Naturally, at the problem formulation, any theohpsld take into account that the basic tech-
niques of experiments could be focused on the stlidlye dynamical response of the system to
most simple test signals. The spectrum in the mspdo sufficiently intense input high-
frequency signals, due to nonlinear processesheaguite complex to identify the structure of
the object under investigation. Therefore, onénefrhost important problems is to describe theo-
retically those frequency bands in which the dyresnaf the system would be most predictable,
as well it is possible. An appropriate strategy banbased on the simplest classical models,
which can be naturally extended, if necessaryjgsttimrwardly to quantum models which de-

scribe adequately the properties of a real mictesys

113



In this study, we present a complete classificatibtriple-wave resonances in a simple model of
anharmonic chain, taking into account both ceratra noncentral interactions between the parti-
cles within the harmonic approximation. It is shothat a low-frequency quasi-harmonic longi-

tudinal wave, caused by central interactions, nsosk always unstable. This, comparatively long
longitudinal wave breaks up into a couple of seeoypdnid-frequency transverse waves, pro-
vided that the group velocity of this primary maitees not exceed that of extremely long longi-

tudinal waves.

In the short-wave range, the triple-wave interadi@are much more complicated. In the case,
when the group velocity of the primary unstabl@sigerse waves exceeds that of extremely long
longitudinal waves, a multi-wave cascade processheacreated, since a lot of resonant triads
can be simultaneously involved in the nonlineaernattion due to the phase matching between
waves. This means that the high-frequency transvewsves, the group velocity of which ex-

ceeds the group velocity of extremely long longmadl waves, are always unstable with respect
to small perturbations. However, together with @asing number of waves involved in this cas-
cade process, the spectral parameters of theaiscylilmodes do not increase. This means that
the energy flux is redistributed mainly from thetnifrequency band to the low-frequency part

of the spectrum of vibrations, and the number otlesy involved in the cascade process, is al-

ways a finite or countable number, at least withmfirst-order nonlinear approximation.

Cascade processes of energy exchange betweencih@t@y modes are characterized not only
by a complex chaotic dynamics inherent in nonirablr Hamiltonian dynamical systems, but

also by the presence of multi-wave stationary nmstjcgtable by the Lyapunov criterion.

In microsystems, such stationary wave ensembles lmagssociated with coherent processes
which can significantly influence on the macrosgalhgsical properties such as a specific heat
and other phenomenological parameters of the sysispecially at low temperatures. Note that
a significant progress in theoretical and experialestudy on the area of nonlinear cascade
processes had been achieved in fluid mechanic9498p]. From a viewpoint of the solid

acoustics, this theory still requires further depehent, and therefore, this would be focused in
this study. Nowadays, a hot point of interest comeavith a problem of heat transfer in low-

dimensional solids possessing a crystal structline. heat transport in crystalline insulators is
carried due to elemental excitations, also nhameghasions or elastic quasi-harmonic oscilla-
tions of the lattice. The two most important noaén effects in crystalline solids are the thermal
expansion and the phonon thermal conductivity. fhleemal current can arise as a population of
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phonons deviates from its equilibrium state, beeaioth the diffusion and decay. Multi-wave

resonant interactions in insulators, such as tpketphonon break-up processes, change the qua-
siparticle population accordingly to the Bose gaslel. Apart the scattering on impurities, the

triple-phonon interactions cause a finite thernmahsport at expense of mechanisms of the so-
called the Umklapp processes [97]. Thus, the theressstivity should necessary present at least
at higher temperatures. At low temperatures the ldpgkprocesses are weakly expressed, as a
rule. This means that the heat transfer in low-disn@nal system can possess features inherent in
ballistic phonon propagation, similar to the staéity multi-wave resonant processes which are

of main interest in this chapter.

Equations of motion and dispersion relations

We consider mechanical vibrations of a simple omeedsional chain consisting of particles of
equal massen, placed along a straight line at equal distareebeing at the rest. Each particle
has two degrees of freedom on the plane of ogoifiaThe forces between the particles are both
central and noncentral. Accounting for noncentgratomic interactions leads to appearance of
so-calledtransverseor bendingoscillatory modes. An absolute elongation of anset in the

chain, A, and the curvature of the median line, in the vicinity of the atom numbercan be

expressed as it follows:

ho= e (= )F (o, -a:

and

W, — W, W, —W,
K, = arcta{“—“‘lj - arctarEMJ :
a+tu,—u,, a+u,, —u,
whereu, =u,(t) andw, =w,(t) are the longitudinal and transverse componentkentiisplace-

ment of centers of masses, respectively, whichnaterally oriented relatively the Cartesian

axes. Then the Lagrangian of the system in the tvaicrapproximation takes the form

Z

L=gi(u§+w§)—%2(a/1ﬁ+,8k§), (7.1)

n=-z n=-z

where the phenomenological constaatsand S characterize the stretching and transverse mo-

tions of the chain, respectively; the dot denotsvdtive with respect to the tinte The number

of elemental cell&Z in the chain is supposed to be large enough,4.e., .
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Equations governing the dynamics of the chain ofigdas are derived with the help of the

Euler-Lagrange variational principle. For the cameace of asymptotic procedures we intro-
duce a small parameter <<1, using the following similarity transformun(t)a /Jun(t),

w,(t) > zw (t). The small parameter is arbitrary, for examplee ocan assume that
pa=max(u, (t). w,(t)).

In the linear limit, asu - Qequations of motion read as it follows:

a(un—l - 2un + un+1);

mi =
(7.2)
mw, = ,8(— W, _, +4w, _, —6w, +4w  — Wn+2).

Let the number of particles in the chain tendsnfonity, then a solution to Es. (7.2) can be ex-

pressed in the integral form:

00

U,(t)= [(A(K)expiglk.t) + A (k)expl-ig(k.t)Hk
- (7.3)

0)= J(A()expig(k.t)+ A (K)exd-ig (k )k,

where A(k) and A (k) are the complex amplitudes\((k) and A (k) are the corresponding
complex conjugates of the preceding termg)k,t)=a(k)t + kan and g(k,t)=ay (k) +kan
denote fast-rotating phases of the transverse amgitudinal waves, respectivelyy(k) and

a)n(k) stand for the natural frequencies of the normafioaic waves, depending upon the wave

number k. Spectral parameters of the set (7.2) are conpletearacterized by the following

dispersion relations

cq(k):\/%a(l—coska); aw,(k)=2 %(l;:ska)' (7.4)

which are presented in Fig. 7.1.

These dispersion curves have three characterisitits

» The group-matchingpoint in the long-wave range (indicated By in Fig. 7.1), where

the group velocity of the extremely long longitualinvave coincides with the group ve-
locity of the transverse Wav*eakgl‘ = arcsir(q/ al ,8a/2).
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* There is also a point ajroup synchronisnn the short-wave range (marked By in
Fig. 7.1), where the group velocity of the extreynkeing longitudinal wave coincides
with the group velocity of the transverse wa}&kgz‘ = r—arcsi 1/O/Iﬁ’a/Z).

* Thephase-matchingoint (marked a$> in Fig. 7.1) in which the phase velocities of

longitudinal waves coincide with that of and tragise waves:
‘akph‘ =T- arcco£(0/a2 - 2,8)/ Zﬁ).

|._.|=|

0

=]

G

.
:~|J|=| 4

a0

=

5a

Fig. 7.1 The dispersion relation of longitudinal and trarse waves in the chain

For most known natural materials possessing a gierstructure, a reaction of a sample on a
transverse deformation is usually small, so theuatity o << £a* holds true. This means that
the transverse waves typically have comparatively frequencies compared to those of longi-
tudinal waves. Therefore, in the nonlinear formolatof the problem, it is expected that the
high-frequency longitudinal waves should be unstatith respect to small low-frequency trans-
verse perturbations. Though, one should pay atteriat many artificial materials, appearing in
recent times, commonly calledetamaterialswhich can have extremely unexpected and para-
doxical properties. For example, for some “telescometamaterials the relatior = fa* can

be true. This indicates, in turn, that the transeavaves may possess enough energy for efficient
interaction between longitudinal waves due to madrity. Therefore, in this study we formulate
the general problem, namely, a question is not onthe study of the nonlinear wave dynamics
in natural materials, but also in metamaterial@lmch a resistance on bending deformations can

be compared with that of tension and compressiasezhbe longitudinal waves.
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Average Lagrangian. Hamiltonian

Let the small parameter of the probleembe nonzero and finite. Then the solution (7.3)h@

linearized set (7.2) can be successfully utilizethave useful information about basic properties
of the weakly nonlinear system characterized bylLthgrangian (7.1). This is achieved by vary-

ing the arbitrary constants of integration in tirae, the role of which in the present study is
played by the complex amplitudes of quasi-harmwerdues: A, B, A andB,.

If «#0, then the solution of any quasilinear system igetigped in the same form as the ex-
pression (7.3), using a formal modification of wtes: A(k) - A(kt), B(k) - B(kt),
A (k) - A(kt) and B,(k) — B,(k,t). Obviously, the time variations of amplitudes webtde
the brighter with growth of the parameter, so that the introduction of new scales of slow

times, i.e.r, - K", is actual.

In addition, following the general procedure consting the asymptotic solution, the expression

(7.3) should be modified by adding small correcsiom the kernel solution in the form of an ex-
pansion in the small parametgr.

00

U, (t)= I(A (k,z,,7,...)expig(k,t)+ A (k,7, rz,...)exr(—iq(k,t)))jk+ iymugm)(t);
b m=1 (7.5)

[

W)= [l Jexiaka) s Al Jexd-igk i Samio()

—00

The small corrections, if it is necessary, woulddegermined step by step during the construct-

ing the asymptotic solutions with a given accuracy.

The Lagrange function, after the substituting thretke anzats (7.5), and subsequent averaging
over the fast rotating phases(k,t) and g (k,t), appears in the form of so-called average La-

grangian<L> whose arguments are the complex amplitudes ofjtiasi-harmonic waves with

their time derivatives, as well. These argumeimi®r alia, are proportional to the canonically

conjugate variables. If one enters by a standasdte@generalized moments

o) ey oy _aly

_ofL). o _ofL)
_a/Ab'pA‘;_aA{;,

then the average Lagrangia(1_> can be transformed into the averaged Hamiltonian
(H)=Ap, +A P, + AP, +A§pA€ —(L). The advantages of the Hamiltonian description,
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compared with the Lagrangian one, are that, at,|leae integral of motion is already known
priori, namely<H> =H,, whereH, is an arbitrary constant of integration.

Resonance

The average Hamiltonian, as a power serieg jrhas a transparent structure:
(H) = 12(H,) + t5(H,) + .. (7.6)

The first term(H,) is identical zero by virtue of the dispersion tielas (7.4). The ternfH,) is

a cubic polynomial dependent upon the new genel@ordinates and momenta, namely,
complex conjugate amplitudes of longitudinal arehsiverse waves and their derivatives. This
term holds all the information on the dynamic pmies of the system within the first-order
nonlinear approximation. I(H3> not identical zero, then the system explores fitst-order
resonance. An alternate method, looking for thegmee of resonance in the system, can be as it
follows. The initial system of differential equat® is reduced to the so-callsthndard form

The general solution to the linearized subset efdtandard form is substituted into the right-
hand terms of the standard form, containing thdinear terms. Next, the right-hand terms are
averaged over fast rotating phases, and if theageeis not zero or contains jumps at scanning

the spectral parameters of the system, this méanshe resonance presents in the system [24].

In particular, the dynamical system representedhleyaverage Lagrangia(rt) or the average

Hamiltonian<H>, experiences the resonance due to nonlinear atikena between modes being

in the triple-wave phase matching. As a result masb ensembles known as the triads are
formed. There are no other resonances, exceph#otriple-wave resonances in the first-order
nonlinear approximation in the system under ingastbn. Consequently, in the absence of
resonance, the nonlinearity of system can be neglesince a linear description of the system

would be adequate in this particular case.

Components of resonant ensembles

The set of nonlinearly interacting triads is calieithin this study as aulti-wave resonant en-
semble For the occurrence of nonlinear triple-mode resbrinteraction between waves, any

dynamical system requires an appropriate type afiatic nonlinearity in the equations of mo-

tion, together with fulfilling the following phas@atching conditions [98]
Q= +a+Dw K=k + ks + Ak (7.7)
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Here w, are the natural frequencies aig are the corresponding wave numbers of waves;
Aw~ ,umin(a)n) denotes a possible frequency detuning, assumieel $anall compared to all the
natural frequencies. The eigenfrequencies are nredbdollowing the natural order:

@ 2w, 2 w;. It should be emphasized that the phase-matclunditions are only the necessary
conditions for the creation of thresonant triador triplet. The sufficient conditions arise at suit-
able structure of nonlinear terms in the equatgmeerning the motion. Based on the analysis of
the dispersion properties and the structure ofineatity, one can establish that the triple-mode
resonance in a simple anharmonic chain of particdesbe of three different types, though each
triple can consist of one longitudinal and two Bagrse waves. Similar dynamical processes can

be observed in a straight elastic bar in the loageMimit [100].

Ty, -type triad

The high-frequency mode in a resonant triad offtfs¢ type, which will be referred as§,,, is

the primary longitudinal wave (symbablin the abbreviation is given for the longitudimabde
while the symbolb corresponds to the transverse mode). The ordéminige indexes agrees
with that of frequencies in the phase matching dars (7.7). Solutions to the dispersion equa-
tion (7.4), satisfying the phase-matching condgi@n.7), in the absence of detuninye =0,
can be determined graphically [66, 99—101]. Thedatisns do exist in the wide permissible
range of wave numbers, but only when the wave nurabthe longitudinal modes; does not

belong to the following “forbidden” interval:

km{arctarﬁ gm(aa2—4,g )a ]/a, 2ir- arctar{ W(aa2—4,8 )a J/ a}. (7.8)

a’a’ - 24Baa® +165° a’at - 24Paa® +163°

In the case of long-wave processfes,| < 77~ arcco:é(aa2 —2[3)/2[?), the secondary transverse
waves propagate in opposite directions, sikgde < . TRe kinematic scheme of “longwave”

T, -type triplet on the dispersion diagram is showfim 7.2.
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T, — triad parameters [ae=10Pp=0275 a=1,m=1]

0.5

Fig. 7.2 The “longwave” phase matching due to e-type triple-wave resonance. The lower
point of the group matching is indicated @s the higher point of the group matching — by sym-
bol G,; the phase matching point is indicatedRasthe pointsL, and L, refer to the lower and
upper boundaries of the “forbidden” zone for londihal waves

The “shortwave” resonant processes|ak§| > T— arccosé(a'a2 —2,8)/ 2,8), are characterized by

the same direction of travelling, both for the painy longitudinal and secondary transverse
waves. A scheme of “shortwav@;, -triplet is shown in Fig. 7.3.

T, — triad parameters [ae=1,p=0275. a=1,m=1]

0.5

0 T T T T
G (i] P L

Fig. 7.3 The phase matching of the “shortwave” resonapletrwave ofT,, -type
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T,, -type triad

Let the high-frequency mode of the triplet of tleeend type, namely,, -triad, is the primary

transverse wave number 1, while the numbers 2 acmtr@spond to the secondary longitudinal

and transverse waves, respectively. Then the phasehing conditions for these three waves
exist only in the interva|kla] > arcsir(a,/a/,B/Z). Figure 4 shows a “longwave” triplet of the

second type, wherein the all the three waves, aislyotravel in the same direction.

T, . — iriad parameicrs [ee=1.0,p=0.275, a=1,m=1]

0.5

Fig. 7.4 Scheme of the “longwaveT,, - type triad
Ty -type triad

Finally, a scheme of the third-type triad, namedi,gstriad, is given in Fig. 7.5. The properties

of this triad are similar to that of thg,, -type triad. However, as it is obvious that the segon-

dary waves, namely the longitudinal and transveredes, can be both unstable: the longitudinal
mode splits into a pair of transverse waves (tater@ new smaller-scalg -triad), while the

secondary transverse mode breaks up into the taligéal and the transverse waves (to form a
smaller-scalél,, -type triad, in turn).
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T, — iriad parameicrs [ee=1.0,p=0.275, a=1,m=1]

0.5

Fig. 7.5 The scheme of the “shortwav@,, - type triad

Summarizing the above information, related theawaitypes of resonant triads in the chain, one
should pay attention to that if the high-frequedegay mode is the longitudinal wave, then the
triple-frequency resonant interactions are alwayswad by the phase-matching conditions
(T, -triads), except for the “forbidden” zone (7.8).tlfe primary mode is the high-frequency

transverse wave, then the triple-wave resonantegsas are possible only in the case when the
group velocity of this wave is not less than thialoagitudinal waves T, -triad), i.e., the spec-

tral parameters of the unstable transverse modes$ always be above the “longwave” group-
matching point. The third type of triple-wave irgetion (T, -triad) is clearly manifested in the
shortwave processes, when the spectral paramédttdre anstable transverse wave exceed those
determined by the “shortwave” group-matching pokigure 6 shows a cumulative result illus-
trating some fragments of the triple-wave resomateractions, have been exemplified above in
Fig. 7.2 — 7.5. Actually, the study of elementargperties of such cascade processes becomes of

interest in this chapter.
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Cascade parameters [00=1.0,p=0275, a=1,m=1]

0.5

Fig. 7.6 A fragments of cascade interactions between mbelesging to triplets of,, -, T, -
and T, -types

Evolution equations

T, -type triad

Let the high-frequency mode of the resonant triaecadongitudinal wave. Then, after substitut-
ing the following representation of the solution:
u, (t) = A(r)expi(et + kan)+ cc.;
(7.9)
w, (t) = A,(r)expi(awt + kan)+ A(r)expi(ewt + kan) + cc.,

into the Lagrangian (7.1), whem, and k., are the spectral parameters of waves entering the
resonant triple;An(r) are the complex amplitudes of quasi-harmonic wakasslowly varying

in the time7 =t ; cc. denotes the complex conjugate of the precedingsethe evolution

eqguations describing the evolution of the firsteypad take the following form:

dA dA
2mw A :—aH'E’b' 2mw A - Ot (7.10)

dr oA dr ~ 0A

] J

Here H,, =qbb(A{A2%exd—iAlbb)—A&A;A; expiA,bb) is the average potential of tHg, -type
triplet; A, = (- — )t +(k, —k, —k;)an stands for a small phase-matching derunigg;
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is the coefficient of the nonlinear interactionaddcterized by vanishing at the phase matching
point (Fig. 7.7).

Nanlinearitv coefficient [P [ee=1.0,p=0275 a=1,m=1]

Cipts

i

Fig. 7.7 The nonlinearity coefficient of th&,, -type triad vs. wave number

The analytical value of this nonlinearity coefficteeads as it follows:

Gun = 22 (sin(akc) + sinfak) - sinfal +K,)) ¢

, 2B(5sin(ak,) +5sinak;) - esin(alk, + k,)) - sin(ak;) + (7.11)
?(’f sin(a(2k, + k,)) + sin(a(k, + 2k,)) - sin(2ak,) ]

T,,- and T, - type triads

The evolution equations of the triad of the sectypd are completely analogous to the written
set (7.10):

dA dA
Zma)—pﬁ:aH_b*lb; me,_pﬁ:_aHblb’ (7.12)
Ydr oA bdr oA

] ]

where Hy, =G, (AL AAexp(-i,,) - C-C-); Dy, = (@ - — @)t +(k —k, —k;Jan. The coeffi-

cient of nonlinear interaction is expressed byfthlewing formula:
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G = 22 (sin(alk, + ) ~sinfakc) ~sin(alc)) -

28 ( ssin(a(k, + k;)) - 5sin(ak,) — 6sin(ak, ) + sin(2ak,) +]
a’ | -sin(2alk, +k;))+ sin(a(k, k) +sin(a(2k, +k,)) J

(7.13)

Obviously, this coefficient equals zero below thenwave” group matching point and vanishes
at the phase velocity matching point. One can ofesarchange in the sign near the “shortwave”

group-matching point. In addition, near this “skave” group-matching point, the nonlinearity
coefficient c,,, can produce one more branch (Fig. 7.8). Ambigaftghe nonlinearity coeffi-

cient means that for a given value of the wave remdb the unstable modk,, two cascade

processes can be developed simultaneously. An dgaphsuch two triads, initiating the two
cascades, is shown in Fig. 7.9.

Nonlinearity coefficientc,, [oe=1.0, f=02501, a=1,m=1] Nonlinearity coefficient c,, [=1.0, p=0255, a=1,m=1]
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Fig. 7.8 Branches of the nonlinearity coefficient of thg -type triad vs. increasing values of
the parametes
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Fig. 7.9 Two differentT,, -type triads with the same unstable high-frequenogle marked by a
star
The evolution equations and the formula for theffawent of nonlinearity T,,, -type triad are

formally described by the already existing expm@ssi(7.12) and (7.13).

Conservation laws for isolated triads

The evolution equations presented, e.g. in the foirig. (7.10), possess the first integrals. One
of them, obviously, is the average Hamiltonidh,, =  stant, while the others are known as

the Manley-Rowe relations:
W|A[T) +wlA ) =cn wlAl) -wlAl) =c., (7.14)

where c,,, c,, are arbitrary integration constants determinednftbe initial conditions to the

Cauchy problem. These integrals of motion are cigffit for complete integrability of Eq. (7.10)
or Eq. (7.12). The general solution is determingdidcobi elliptic functions. A particular form
of these solutions and some typical wave patteltastrating, in particular, processes of the so-
calleddecay instabilityover the high-frequency mode of a triad had besstigbed in the paper
[102].

Cascade interaction between triads

The waves entering the resonant triads in the obfamaterial particles can effectively interact,
being the components of triads of three differgpes and different spectral states. To formulate

the problem of multi-wave resonant interactionemis of the nonlinearly coupled triads pos-
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sessing different types and spectral scales, omdotlaw the main ideas traced in papers [103—
105].

There is one, not the only, main sequence govertmaglevelopment of the nonlinear coupling
between the resonant triads, provided that eaall tan be treated now as an elemental struc-
tural element in cascade wave processes. To thacsdquence, one can suppose that the longi-
tudinal high-frequency mode, say, inside a give'mdtr'l’lét), is unstable with respect to small
transverse perturbation. Thus, the secondary temssvmode of this triad at the mid-frequency
aél), again, due to the phase-matching conditions,spilag role of the unstable high-frequency
transverse mode, though, inside the n‘éo‘,ﬁ)-triad of a smaller scale at the frequenqg?),
which, naturally, coincides with the mid-frequenagﬁl). In turn, the longitudinal mode at the
mid-frequencyad?, being a member of th&{?)-triad, becomes unstable within tig) -triad of

the smallest scale, etc.

It should be noted that in this model, describinguacessive “engagement” of triads, one spe-
cific T,t(,g‘)-type resonant triad always presents. This is éatat the lower part of the spectrum,

which is appropriately to call as “terminator”. $hriad prevents the further development of the
cascade down the spectrum, representing the iddiapdée-wave resonant ensemble. The group
velocities of the transverse modes, entering #isiinator, are always less than that of the ex-

tremely long longitudinal wave.

In addition to this “main sequence of the engagdineh resonant triads inherent in low-
frequency processes in the chain of particlesgetieeone more, somewhat sophisticated type of

the cascade processes. On the one hand, this iscsnaspired by the existence of different pat-
terns insiderl,,, -type triads having the same high-frequency trarsgvmode (Fig. 7.9), while on

the other hand, with the occurrence of the thigktiriples, namely,,, -triads (Fig. 7.5).

Recall that theT,,, -type triad is characterized that the both secondardes, namely the trans-

verse and longitudinal ones, are unstable withaesifp small perturbations. The break-up of the
primary high-frequency transverse mode of Mg-triad is accompanied by the simultaneous
excitation of a new pair of triads of,, - and T, -types, the high-frequency components of

which, in turn, are the secondary low-frequency esodf theT,,, -triad (Fig. 7.6). In this case,

the triad chain branches, and this structure wbeléppropriate to call resonant latticesince

this dynamical system would consist of several eleta resonant cascades. Namely, the secon-
dary transverse mode of oscillations, being a cbilthe parenfT,,, -triad, is the unstable mode
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entering into the subsidiary,, -type triad. ThisT, -triad, in turn, contains the unstable trans-

verse mode generating a new cascade of interaciordingly to the “main sequence” sce-
nario. The second longitudinal mode of the subsydif, -triad, being unstable one, creates a
new cascade of interactions between the oscillatooges also in agree with this “main se-
guence” of junctions between the resonant triadshould be noted that the total number of

resonant triads, accordingly the above describedeinaf break-up instability, is small, since the
secondary mode of thi§,,, -type triads is always the unstable mode insiderattiads possess-

ing another pattern than tfg,, -type.

Generally, the patterns of resonant interactiorthénmodal cascade can be represented as a tree-
like graph. Subtrees of this tree are formed atites related to th&, -type triads and some

T, -type triads, which are discussed above, and hwrcof this tree is formed by the terminat-

ing triads of T, -type. Similar graphs and the related dynamic @Bses are studied in detail in
papers [106, 107].

Evolution equations of the triad chain

If one accepts the above proposed scheme of “negjnence of junctions” between the resonant
triads, then the average Hamiltonian of the trildir, consisting oiN triplets, can be written as

it follows

N

H = Z'BJ (A*Zi-lAZj A2]+1 EX[{— iAj )_ Azj-lA;j A;j+1 eXpiAj ) (7.15)

=1

where g, are the nonlinearity coefficients related to theh resonant triplet (these coefficients,

in turn, alternate by pairs,,, and c,,, with account for the scale of spectral stateipfes); A

are possible small phase detunir(g;s ],_N); A, (n=12N +1) are the complex amplitudes of

waves, slowly varying in the time. The natural ordering of these amplitudes is agbbpt indi-
ces: A, relate to the high-frequency unstable modag, are to the so-called “idle” modes,

while A,;,, denote the “signal” ones [98]. The evolution eeurat of the triad chain are derived

from the Hamiltonian formalism of mechanics:

2mag I = O gy 9A = _OH - ( _ o). (7.16)
dr 0A dr oA,

If one passes from the complex amplitudes to tharmmordinates
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Al)=a,0)expig, (1) (h=T2N 1),

then Eq. (7.16) take the form

B

a = “oma 8,8, CoOgY,;
. B, —
a2] 2 a2] 1a21+1COS// (J =1, N)
My,
B, B (7.17)
azi+1 2m—a)21 2j- 1a21 COS// 2m;;21_ 1a2j+2a21'+3cog//j+l (J :1’ N _1);
j+ j+
a2N+1 mez aZN 1a2N COS[/N
N+1
and
___ B aa
¢l Zma.1 a1 S l/’]_l
ooty S, 50
o (7.18)
¢2j+1 — :BJ a2j—1a2j Slnw _ ﬁj+l a2]+2a2j+3 Sinwj+1 (J ::LN——]_);

J
2mw2j+1 a2j+1 2ma)2j+1 a2j+l

¢2N ) = /BN aZN—laZN
2rnC")2N+1 a2N+1

siny,,,

where the angular variableg, (r):¢2j_1(r)—¢2j(r)—¢2j+l(r) (j =l_N) are called ageneral-
ized phasesand a,(7) =|A,(r) (1=12N+1) are the modulii of the complex amplitudes. The

last group of2N +1 equations for the individual phases can be resvrith the form ofN equa-

tions for the generalized phases:

wl:ﬂ(azag _ag, _ alastinwl B ads g,

2m\wa,  wa, wa, 2m wga,
¢/j :&azj—zazj 3S|n¢/] . ﬂ ( &4 _ Ay 141 _ )12 JSinwj _
2m Wy 131 2m Wy 1351 W Qy; Wy 4141

(7.19)
'Bﬁlmsmlﬂm (j =2,N _1)
2m a)21+1a21+1
w, = BrrBanPons gy, 4 P ( Qnones _ Bon-ifona __ Bon-iBon
2m a)ZN—laZN—l 2m a)ZN—laZN—l a)ZNaZN a)2N+1a2N+1

jsinl//N.

130



It would be noted, if the chain consists Nf triplets, then the theory of differential equason

specifies that the first-order resonance has tteraf N [24].

Conservation laws of the cascade process

Together with the obvious integral of motion (7,2%hich is naturally interpreted as the law of
energyconservationthat is valid for any number of resonantly intéirag waves, the set (7.17)
and (7.18), in the cas® =1, as it was shown above, has a pair of indeperm®ditions known
as the Manly-Rowe relations (7.14). The existerfcthese integrals of motion is sufficient for
complete integrability. However, the system (7.1(7),18) becomes nonintegrabile beginning

from the numbelN = 2

Let us introduce the following notatio, = af|ﬂ|2. If N =2, then the conservation laws in the

form of the Manley-Rowe relations:

E, E, E

E E
E + —2 =constant; - - —4% =constant; = -

5_5 = constant, (7.20)
o @ W o W, @

£ |

~

prescribe the following energy partition betweea tldld modes of oscillation:

E.&\E = constant
W W

and the law of the total mechanical energy consienva

E+E+E+5+E:constam
g w W W

If N=2, then the set (7.17), (7.18), together with the¢hef Manley-Rowe relations (7.20), has
four obvious independent integrals of motion. Theeo of the set (7.17), (7.18) is seven, i.e.,
one should determine the five amplitudes and tweegdized phases [108]. However, the num-
ber of available integrals of motion is insufficidor the complete integrability in quadratures.
Suppose that the following inequality > lds true, then the amount of “missing” integrals
of motion just increases. For example,Nf= , tBe system (7.17), (7.18), together with the

Hamiltonian (7.15) has only five independent inggiof motion:
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=) + 15 = constant;

o W

E _E _E = constant; 5 —E —E = constant;
w W W o

E_& = constant,

W W

which produce the energy partition between theraddes of oscillation, analogously to the
previous case:

4 E .
> —2= =constant
j=1 Wy 4

and the law of conservation of the total mecharecargy:

,
> E, = constant

n=1

Now the order of the set (7.17), (7.18) is alretay one has got seven unknown real amplitudes

and three generalized phases.

In the general case df interacting triads, the set (7.17), (7.18) s 2 obvious independent
integrals of motion:

E + E = constant;
2]
E, E,. By LN -1
2j _ Bojn _ Bajea _ COﬂStant(j =1N —1) (721)
W Wy Gy
Eon _Eonn = constant
Wy Gy

The energy partition between odd modes of os@betitakes place in the form

E,
Z# = constant
=1 W)

and the total mechanical energy is naturally coreser

2N+1

> E, =constant

n=1
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The order of the set (7.17), (7.18) is equaBhd+1 (i.e., there ar&N + Linknown amplitudes
and N unknown generalized phases). The available sebréervation laws is obviously insuf-
ficient for the complete integrability in terms qtiadratures. Therefore, one should recognize
numerical methods to be the only effective wayttwlg the problem in detail. It should be noted
that the numerical simulation confirms that thebbpean becomes very difficult even &t = . 2
This indicates inefficiency of looking for additiahconservation laws, different from the Man-
ley-Rowe relations (7.21), in order to significagnteduce the order of the differential equations
(7.17) and (7.18) until the complete integrabiliyn algorithm dealing with such quadratic con-

servation laws is described in detail in the wdr@q].

Stationary waves in resonant chains

In general, the evolution of waves described by ribalinear Hamiltonian system (7.17) and
(7.18) is very complex, including variety of chaotnhotions, limited by the energy conservation
law H = constantand the Manley-Rowe relations (7.21). Among thererset of motions, the
natural interest is attracted to the stable statipmulti-mode quasi-periodic oscillations which
can appear in the microsystem under small nonceatsee perturbations, such as temperature
effects. Indeed, at certain relations between thplitudes and phases of quasi-normal waves,
the chain of resonant triads can be involved inso-&alledreactivenonlinear interaction [110],
which conserves the shape of the resonant ense@iniplest stationary solutions to the set

(7.17) and (7.18) are the harmonic waves, periodibe space and time.

Spatially homogeneous solutions

We study the properties of stationary waves. Aipaldr interest is in the amplitude dispersion,
i.e., the dependence between the additive correxti@,, to the natural frequencies of quasi-

normal wavesw, and the amplitudes, . To determine the parameters of spatially homogese

stationary solutions of system (7.17), (7.18):

Ar)=aexpi(@,r+¢&) (n=12N+1) (7.22)

we explore2N + ®quations (7.19), which imply the following relai®
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Q]_ - ﬂlaZaS .

wa,
a.. ) _
sz =ﬁ] 2j+1a2j—1; (J =1,N)
@218 (7.23)
sz+1 - :Bjazj—lan + j+1a2j+2a2j+3; (J :ZLN——l)
w2j+la2j+l
— ﬂNaQN—laQN
QZN+1
%N+1a2N+1
and the phase-matching conditions for nonlinearections:
Qo0 = Q50 Q50 =0 on—l - on - fzn+1 =lﬂr?, (7.24)

where ¢° are arbitrary constants of the generalized phaBes. phase-matching conditions
(7.24) are determined by necessity for the exigtesfcnontrivial steady states; therefore, the

generalized phases should satisfy the followingrict®ns:

Y =ml2+m,, (7.25)

where m; are arbitrary integers. The latter manifests thenpmenon of phase synchronization

in the system, which can lead to a neutrally staleleodic or quasi-periodic motion, similar to
the stable planetary orbits in the Hamiltonian nagats [111].

To obtain the solution of the set (7.23) and (7.2fe can use the method of mathematical in-

duction. For a single triad, & =1, the system (7.23), (7.24) gets the following form

a12 — ngﬁsg"za's ;
1
2 _ Q0w
g
2 _ 0,0,
aS ﬂlZ )

If N =3, then the solution to Eq. (7.23), (7.24) has trenf
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2
o7 = 2 5o 2O L0 _( B, j Q,0,0 W,
Q. B B; Q,w,
2 _ QQ00
&=
azz( B ] Q.0,0,0 e,
88, Q.0
2 - QQ00, .
TTE
2
a2 = 0 2 - Q00 _( b j Q.0,0 mww,
Qg /832 JENEA Q,w,

Finally, for N =5 the solution is as it follows

2
27 = OB _( B, ] Q,0,0 W +( B.B, ] 0,Q0,,0, L,

B BB Q,w, BL:5; Q,w,Qq0,
2
a22 — QlQ 30').[0'% _ 132 QlQGQ 70')10“)60')7 + ﬂ2ﬁ4 Q Q QlOQllwa)GaiOail
1812 ﬂ]ﬂS Q4w4 ﬂ]ﬂ&iﬂS Q w QS%
_ Q,Q,uw .
ag i 22 :
B
2
af :( ﬂZ Jz §21£-22§26§2 76()16()20.)66()7 _( ﬂ2ﬂ4 J QlQZQGQIOQllwla)Za)GQ{Oail;
B Q) BBS; Q. f 0w
852 - QGQ 70.)60)7 _( 184 Q QlOQlleaiOail
Bi B:Bs Qg
2 2
ag — QSQ 70')50')7 _ 132 QlQZQ 70')10)20')7 _ 134 QSQllel%aiOail +
1832 ﬂlﬁ?; Q w ﬂ3ﬂ5 QS%
+( IBZﬁzl ] Q Q QlOQllww2ai0a11
BB:Ls Q,w,Qqa,

o = 200 _( 5 j Q,0,0
' B Bp; Q0

2
( ﬂ4 j QSQGQlOQlleC()Ga{Oail _( ﬂ2ﬂ4 j Q Q Q Qlogllwla)Za)Gaioail

3

BB (Qqaf B.B:Ls @, (Qq0,f
Q00 Bt
ag 10°<11*%~10
B
2
a120= Qllail 21: Qlogllaioail_( ﬂ4 J QSQGQllw 6 1 _
Q0 B B3 Qq,
2
_( ﬂ2ﬂ4 ] QlQ Q Qllwla) 61
:B]ﬂ3ﬂ5 40)4 80‘%5
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Solutions to the set (7.23), (7.24) for an arbyjtnealue N are given in the Appendix.

Obviously, the set (7.23) and (7.24) is underdeiteechone. Therefore, to study the properties of

stationary processes, it is necessary to allovafoumber of assumptions, but without losing the
generality. For example, suppose that the initnzlses of individual waves; =¢&?, are known,

and the nonlinear corrections to the frequendizs, are directly proportional to those of normal
waves, w;, with the proportionality coefficienk =Q, /@, . Then the algebraic system of equa-

tions (7.23), (7.24) has a unique solutiap, if this set is consistent. In this case, the isfint

homogeneous solution of the problem can be integgras rotations of the imaging point around
a 2(2N +1)-dimensional torus in the phase space. The radiumrs on this torus are the con-
stant amplitudes of waves, , and the corresponding angular coordinates vasatly, i.e.,

er+5j°. In the given particular case the motion will lhectly periodic, because both the fre-

quenciesw, and the nonlinear corrections to the@ satisfy the phase-matching conditions

(7.25). This means that all phase curves are cJas®tinot everywhere covers the torus, having
a finite number of rotations. The amplitudes of st@ionary waves are directly proportional to
the ratiox =Q, /w,, which plays a role analogous to the temperatfiteeothermostat. For in-
stance, letk be zero, then all amplitudes are also zeroes. Bbenof stationary solutions for a
cascade consisting of five triads, in the casehefamplitude proportional dispersion, at1,

are shown in Fig. 7.10.

Amplitude vs. frequency (=10, B=02750,a= 1, m=1] Amplitudes vs. wave number [c0=1.0, f=02750,a=1,m=1]
0.0008 s e ® 0.0008 4 * ¢
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0.00024 0.0002

0.0001 4 00001+

Fig. 7.10 The amplitudes of stationary wave at the ampdtpcbportional dispersion (a — de-
pendence vs. the frequency; b — the same, vs. dlkie mumber)

Let us suppose that the nonlinear correcti@g, are not proportional to the natural frequencies,
w;, but to the wave number€; =k; . Then one obtains somewhat different stationasyritu-
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tion (Fig. 7.11), although the modal cascade ctmsitthe same five triads, as in the previous

example shown in Fig. 7.10.
Besides the parameters specified in the above dranfigr the five interacting triads, one can
find such sets of the frequency correctidas, also formally satisfying the phase-matching rela-

tions (7.25), but such that the stationary solgiare absent. This means that although there are
infinitely many of various stationary solutions,matheless, some selection rule that limits this
set should exist there. The study of this quesisonontrivial task, since the method for con-

structing the stationary solutions does not opesatie elementary functions (cf. the Appendix).

Amplitude vs. frequency [ =110, B =02750,a=1,m=1 ] Amplitudes vs wave number [ w=1.0, ﬁ =02750, a=1,m=1 ]
* &
& @ +

006" 0.06
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0.041 0.04
i .03 % 903
0.02 0.021

0.01 4 001+
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. ,(r

Fig. 7.11 The stationary values of amplitudes at frequesaryections proportional to the wave
numbers (a — dependence upon the frequency; bsathe, vs. the wave number)

Energy distribution of stationary waves in the cascade

From the solutions to the algebraic equations (7a28 (7.24) one can deduct an important con-
clusion on the patterns of the energy distributb@tween the quasi-harmonic modes of oscilla-
tions for the spatially homogeneous process. Nantietyenergy of the modes with even indices
is in the one-third ratio to those with odd indicE®reover, the energy parts between the trans-
verse modes with odd indices and longitudinal mpdéso with odd ones, are equal. In other

words, if the “total energy” of the stationary pess is defined by the expression

2N+1

Y. Qwal =E,
=1

then the following outstanding relation:
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(N+1)/2 (N+1)/2

N

2 2 — 2 —
ZQZj%jaZj - ZQ4j—la)4j—la4j—l - ZQ4j—3w4j—3a4j—3 -
i=1 i=1 i=1

w|m

holds true. In particular, this fundamental law d¢entraced in Fig. 7.10 and Fig. 7.11, though
this is not so obvious at the first sight. Thisiatton confirms that the analytical conclusions are
always more capacious than any graphic illustratibomay be noted that in the case of a single
triad, the stationary solution is exactly assocdiatgth the equipartition by the Rayleigh-Jeans

law.

Equation for small perturbations and stability of steady states

Perturbed motions in the chain, composed\afesonant triads near the stationary solutions, are

prepared as it follows
A (T) = I_aj +b, (T)]eXpi (Q T+E +0, (T)), (7.26)

where a; are the constants characterizing the stationahyesaof the amplitudes of waves;
b, =b,(r) are small perturbations of these variables intime 7 ; 77, =7,(r) stand for small
perturbations to the individual phases of Wa@é) near the stationary values of the general-
ized phases of resonant triadg, (7.25). The indexes vary within the following litsti
j=12N+1 andn=1 N. If the perturbations, and 7, are absent, then the solution (7.26) is

stationary and spatially homogeneous, i.e., thametersa;, Q,; and ¢, satisfying Eq. (7.23),

(7.24).

The dynamics of the perturbed system near theogtaty orbits is characterized by the following

Lagrangian

Y , A dn e
| = IZﬂnaZn—laQnaZnﬂ(,?Zn—l ~17on _’72n+1) +4i zwnbwan[d—z_nj +2i zwnann -
n=1 n=1 n=1

X (7.27)
-2 Z/Bn (a2n—1b2nb2n+l - b2n—1a2nb2n+l - b2n—1b2na2n+l)2'
n=1

This expression can be obtained from the origirsgrangian system (7.1), if one, after the sub-
stitution of the expression (7.26) therein, wouedjlect the higher-order terms, beginning from

the cubic nonlinearity.

The set of linear differential equations of moti@n small perturbations, generated by the La-

grangianl , if one takes into account the phase-matchingitond (7.24), reads as it follows:
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b = Bi3o3s (11, =11, = 115)

20y
A IBnaZn—laznﬂ(,?Zn—l ! _,72n+1)-
b, - ,
i (7.28)
b —_ :Bnam—1azn (’72n—1 — 1o _’72n+1) _ :Bn+1az(n+1)—1a2(n+1) (,72(n+1)—1 _,72(n+1) _,72(n+1)+1).
e 20,4 2054 ,
sz == :BNaZN—laZN (’72N—1 —on _’72N+1)
20y 4
and
;= _B(aah - aap, - aab,).
1 2 ,
28y
n,. = B, (aznam+lb2n—l — 85 Aoy + a2n—1a2nb2n+l)-
2n 2 ,
200,85,
gy = B, (aznam+1b2n—1 + aZh—laZr;len ~ a2n—la2nb2n+l) — (7.29)
2005, 8504
_ ﬁm(az(n+1)az(n+1)+1bz(n+1)-1 = Qy(+1)-130(ns D+ 1o(ns1) ~ a2(n+:l)—1a2(n+l)b2(n+1)+l).
2w21+1a§n+1 ’
n — JEN (azNazN+1b2N—1 + 8,y 18N Doy ~ a2N—1a2Nb2N+1)
2N+1 2 .
20 4185N 41

The characteristic equation to this set of ordindifferential equations haQ(ZN +1) roots.

Among these root2N +2 are zeroes, while the remainirBN roots are nontrivial complex
conjugate roots. Moreover, these are the diffepemely imaginary ones. Obviously, the pres-
ence of zero roots is because of that not all tglst variables in the set (7.28) and (7.29) are

independent. One can always reduce the order abrigaal set by introducingN generalized
phases),, . = Mo —Nona (n =1, N), instead of using the individual phasgs (j =12N +1). In

addition, the amplitude of the stationary Wavbﬁ(j =12N +1), are coupled byN + ZInde-

pendent constraints, in the form of the Manley-Raelations (7.21).

As a result, the total number of constraints, ingglosn the system, is equal 20 + . Phis one
coincides with the number of zero roots. The rései purely imaginary roots are inherent in

linear pendulum-like oscillatory systems posses$ihglegrees of freedom.

A concluding remark is that the measure of theysbed motion of the triad chain near the sta-
tionary orbits should coincide with that of the dinpeerturbations. In this interpretation, the sta-
tionary spatially homogeneous solutions are sthpléhe Lyapunov criterion. To prove the sta-

bility properties, one can also use the methodyafplunov functions. Naturally, an appropriate
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role of the Lyapunov function can play the Hamileonobtained by a suitable canonical trans-

formation of the Lagrangian (7.27).

Heat Transport in low-dimensional systems

The quality of the heat transport depends uporphtimon scattering induced by crystalline de-
fects. It is well known that the mean free pdth,v,7, is associated with the motion of a pho-

non, travelling by inertia during some charactesiselaxation timer , where v, denotes the

group velocity of the quasi-harmonic wave packatc& the dispersion of longitudinal waves
prescribes much greater group velocities than tbbsmansverse waves, one can reasonably sup-
pose that the thermal conductivity should be matalysed by longitudinal phonons. It is evident
from many experiments on glass and other bulk anioss that the wave refraction appears due
to the presence of small uncorrelated impuritidsis s exhibited be the Rayleigh scattering,
which traditionally answers on the question “why $k blue” by predicting a transparency for
the longwave packets along the beam of radiatiomtPut that the Rayleigh scattering appears
mainly because of random fluctuations, in contrish the Brillouin scattering, when the pa-
rameters of a wave guide are regularly correlatghbse of dynamical processes. In any case of
scattering, one can suppose that the lifetime shdetrease with increasing number of atoms in
the unit cell, and therefore the thermal energyveosion through materials should be much

more efficient in lower dimensional materials a ttanoscale [112].

The heat flowing per second through unit crossi@ecirea in isotropic media can be evaluated
following the phenomenological Fourier law:=-k[OT , wherek is the coefficient of thermal

conductivity, while sign minus directs the heatravel always from the hot region to the cold
one, accordingly to the second law of thermodynamiic the case of a one-dimensional wire,
when the temperature difference between the hotcaid ends is small, the heat flowing per

second is approximated by the formulas KAT /L, where L denotes the length between the

two thermal baths.

To study a heat current in a perturbed Hamiltommaulti-particle system, one should connect it
to heat baths. For instance, the Langevin modedsslted by modifying the equation of motion

of those patrticles which are immediately in a conteith two thermostats [113]:
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p,=-0H /g, +n,(t), ¢ =oH/dp
b, =-0H /dq,; & =oH/dp, (n=2N-1) (7.30)
py =—0H /dq, +/7N(t); gy =0H /dp,.

where 7,(t) and 7, (t) are the Gaussian stochastic white-noise forcels zéto mean, which

maintain the constant temperatufesind T, of two reservoirs. The forceg;l(t) and 7, (t) are

supposed to be such that mean values of the kiaeégy on the ends of the system model the
temperature effect< pf/2ml>= KT,; <p,§ /2mN>: KT, . The energy balance equation can be

written as it follows

dH/dT =q,

where q=7n,(t)p,/m +1,(t)p, /m, is the power of stochastic forces. The thermabaoativity
can be evaluated ds=qL/AT. Thus, the thermal conductivity can be calculatsthg either

spectral analytical approach, applicable for somear systems, or numerical Monte Carlo

methods in the general case.

A guestion “does the Fourier law hold true in loimdnsional systems” has attracted increasing
attention in recent years [112, 113]. The thernwadductivity can be evaluated in terms of the
spatial size of the system, i.&,~ A.“. A normal diffusion implies a normal heat condoit
obeying the Fourier lawd =0), an anomalous heat conduction is characterized thyergent
thermal conductivity & > ), while an anomalous heat conduction has an itwulbermal con-
ductivity (a < 0). For instance, a ballistic thermal transport neimé¢ in the quasiharmonic wave
motion, leads to a divergent thermal conductivity, @ ~1. One can refer to a numerical evi-
dence for the universal lawa( ~1)3n one-dimensional systems, although nowadaysyman

puzzles remain so far, including the accuracy ofleh§7.30).

Resume

The present theory of stationary cascade processedid only when the energy of nonlinearly
interacting oscillators does not exceed the cflitiedue determined by the equalityw, =kgT ,

where 7 is the Planck constanty; are the classic natural frequencies of normal spkle de-

notes the Boltzmann constarit;is the temperature of a thermostat. The motiothefsystem in
this limit is represented by long-wavelength acmusfives, the propagation of which is inevita-
bly accompanied by the energy dissipation. Theegftire formation of stationary resonant proc-
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esses, excepting trivial ones, is impossible. Hawethis is not so, if the energy of oscillators is
comparable to that of thermal phonons, iz . But in the latter case, it is absolutely necgssar
to have a quantum description, which inevitablydea number of specific features. Quantum
effects imply the vacuum states of the system, tdude non-commutatively properties of the
creation @") and annihilation &) operators of phonons, as well as the appearandsaete
energy levels. Following a standard procedure obisé quantization [114, 115], the Hamilto-
nian operator of the system, corresponding to ldestcal Hamiltonian
z z
H= n:z_z%‘nu'n + n:z_Z:—Vb\Nn -L,

n

where L is the Lagrangian of the original system (7.1)ermathe normalizing transformation,
taking into account the processes allowed onlyldiaeof conservation of energy, is resulted in
the following form

2N+1 1 h

_ 312 B
H= i, §+§ +— [+ — I B, a ) “+_a+_+ —é+._ a a ;! 730

The first term in this operator (7.30) describes #xcitation of oscillatory modes, at the fre-
quency w, by quanta of energyiw . The individual modal energy equals fo, +1/2)iw,,

where the integen; determines the degree of excitation in the giverillator or the number of

phonons. The quantityew, /2orresponds to the vacuum states of the systeheiabsence of

photons. The second term relates to the wave rasgoapling between phonons or the binding

energy.

Following the Heisenberg picture, the time evolateguations of the creation and annihilation

operators:
di :%(I:L'T ~a'A) %:%(ﬁa—aﬁ) (7.31)

are analogous to equations governing the resonadst(7.16). The evolution equations (7.31)
have the same number of conservation laws andthednergy of quanta is also the same, as it
follows from Manly-Rowe conditions (7.21). Theredoit is natural to expect that the properties
of stationary solutions to Eq. (7.31) will be siamito those obtained in the classical approxima-
tion within a context of this study. However, o®sld pay attention to the fact that Eq. (7.31),

in a contrast to the set (7.16), may have solutishigh are not reducible to the classical solu-
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tions [116, 117], since the occupation numberstaedohase of oscillators, being the canonical

variables are not commuting quantities. This faciutd be studied in detail.

Moreover, one more question arises immediatelyhéngeneral case, the average degree of exci-

tation of each oscillator at the given temperaflires determined by the Bose-Einstein statistics:
n, = (exp(ha)j / kBT)—l)‘l. However, for the stationary processes, for exaipla metamaterial,

the phenomenological parameters of which satiséyrdiationa = fa*, the Bose-Einstein dis-

tribution could be unfair. It argues that the B&3pstein statistics assumes zero binding energy
of oscillators, in average. In the case of statipmascade processes, the phase coherence, simi-
lar to the phase matching conditions (7.25), isemsary. Thus, the binding energy cannot be
zero. Moreover, this is a sign-definite quantifythle binding energy would be negative, it indi-
cates the spontaneous formation of a coherent dgngtracture composed of nonlinear interact-
ing oscillators, since the energy of this structigrgess than that of the corresponding system of
decoupled oscillators. Otherwise, in order to namthe structure, the energy is required from
outside, which would be equal or even some highan the binding energy, and, therefore, this
system becomes unstable. Thus, if the stable statiacascade processes are physically realistic,
then it can open an opportunity to create new MEM#Sices with highly efficient heat and

thermal conductivity parameters. But this is ac¢apiquiring much more careful study.
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CONCLUSION

When | was younger, | had a chance to practicenangineer. | went to the task of calculating
the stress-strain state of a thick cylindrical tubkis problem was complicated by a high tem-
perature and high pressure picks inside the tulier Aollecting a lot of information on thermo-
physical properties of the tube material, plaskeovf models, etc., the time come to dive in a
FEM simulation. Barely nine months, as the firgules appeared. It was necessary to analyze
the obtained results on the adequacy. There wasons to think: what it was a difficult work,
this absorbed all my small student skills. Butshlbuld not be hastily for me, and, after a week
or two, one experienced engineer «hurried» witltla help, seeing the futility of my troubles in
ensuring that everything is calculated OK. He mliéf a book from the shelf, opened this one
to the right page and said “Read it”. There waseey \simple formula from the well-known
Lamé problem describing a deformed state in pimeeuinternal pressure; of course, | was well
acquainted with this theory. Seeing that | havéams$y read, my helper took a calculator in a
couple of minutes, and then, slightly glancinghe listing of my calculations, said, “Look at”.
And there was a small miracle: the result on tHeutator with a precision of three decimal
points was exactly the same as in my sophistidautations. Not showing him my admiration, |
said that | had no doubt of the validity in theulgsbut still — why have we so difficult and for a
long time worked over the evidence truth, in thélsvaf this esteemed company. He smiled and
said “when you grow up, maybe, you will know wh¥Perhaps, it was my first lesson in a prac-
tical engineering. After the while, | have undecgtavhy sometimes developers propose to the
user that product which is wanted to. But stilisibetter to write computer games to the public,

than to play them; at least, this will not be bored

It seems that a practical engineering activity nexpua certain mental alertness. It is better oot t
rush in the pursuit of the result, in order to getdecent remuneration». For example, consider

the deformation of a straight elastic thread:
£=(1+u, ) +w? -1,

whereu andw are longitudinal and transverse components oflis|gdacements of points of the
thread along the Cartesian axes Subscript denotes differentiation with respecthe spatial
coordinate. This expression is easy to obtain,dasethe Pythagorean Theorem. Let us interest
in small deformations, and then the formula carsibgplified by getting rid of radical, using a

formal Taylor series expansion:
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E=U +UZ/2+W. /2.

Now check the result. Let there are no transveigg@datements, then the exact formula gives the
correct resulte =u, . But, the approximated formula contains the follegverror:u? /2 What to
do? Formally, the series expansion is valid. Thia convergent series, but the expansion looks

to be much more complicated than the original fiomct

Let us consider another example. Someone need®ove the drawer in the kitchen, perhaps,
without worrying of the safety for the floor sureadHow, will it be easier to cope with the case:
to pull or push it? Obviously, it is easier to pillis one. Let us try to formalize the problem: all
is known: the mass of the box, the coefficient of fliction, etc. Let us believe in the “school”

formula for the dry friction. And, it turns out théhe direction, along which this cargo is re-
placed, should not affect on the mechanical wonkopmed at the same distance. This is, of

course, for the first formal look. But, reallyjstnot so. How to be?

Let us consider one more example as a destruchisession of paradigms. Consider the differ-

ential equation modeling the oscillator with a sfiecestoring force:

X+‘x"’l‘x:O.

It is obvious that solutions to this equation hagsentially different left- and right-side limits
near the origin, as power series. Neverthelessymegearchers, mainly from the East Europe,
believe in the smooth exact solution to this edqumatn the form of the so-called Ateb-function.
The interested reader can easily find them in esleworks traced in the World Wide, accompa-
nied by «proofs» with expanding these mythical fiows in Taylor or Fourier series, and their
various applications in «practice», as well. Obwgigu that is wrong, since we deal with
nonsmooth functions. At the same time, one can ififiekmative and scholarly works over the
related questions in the qualitative theory of oady differential equations with nonanalytic

right-hand termsErratum humanum esbe omnibus dubitandum est
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APPENDIX

Algorithm to find stationary oscillations of the triad chain
The method of mathematical induction is utilizectmstruct solutions to Eqgs. (7.23) and (7.24).
Step 1.

Let N =1. Consider the vectosx :1

n=1

and the scalak,, = Q,Q,Q ww,w,/ A7, characterizing the modal energy in the chain isting
of a single resonant triad. Vect[ﬁla)laf 14 Quwa’la (23a)3a§/4]T =M E,, gives the solu-

tion to the problemaN = .1

Step 2.

Let N = 3. We consider the matricéd ,, and M, dimension7x 2

<
=
w
|
O O O O Fr P~ kb
P P P O O O O
<
w
w
|
O O O O o o o
|
[EEY

and vectors

Vig = |.EL1 EL3J; Vys = lO Es,sJ'

where E,; =

2

Q:Q:Q sl . E., :( B, j Q,Q,Q,Q w0, _
ﬁ?:z ' ﬂlﬂ3 Q4a)4

The vector[§21a)1a12 14 Quwaild Qual /4]T =M,V .s+M .V ,, gives a solution of the prob-

lem for N = 3.
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Step 3.

Let N =5. We introduce the matriced,;, M, and the matrixM ;. of the dimensiorilx 3

100 01 0 00 1
100 01 0 00 1
100 00 O 00 0
000 0 -1 0 00 -1
010 00 1 00 0

Mis=[0 1 O[; My, =0 1 1[;Mg,=[0 0 1
010 01 0 00 0
000 00 -1 00 -1
001 00 O 00 0
001 00 1 00 1
00 1 0 0 1 00 1]

as well as, the vectolg,;, V,; andV;,; (dimension3x
Vis :|.E1,1 Eis ElS]; Vs =lO Eis E3,5J; Vss :|.O 0 Es,sJ’ where

E - QQQlOQlla'ga'loa'll .
15 ﬁz 1
5

2
E35 - ( ﬂ4 j QSQ GQlOQlla)Sa)GaiOail .
© A\ B Qg

2
E.. :( Bobs j Q,0,0 Q1 Q) WLLED,
’ ﬂlﬂ:&ﬂS Q 464“)4§2 8%

s

The vector[Qla)laf 14 Quwails .. Qlla)ﬂafl/4]T =>"(-1)"M ,_, /5 .5 provides the solu-
i=1

tion to the problemaN = 5

Stepi.

Let the solution to the set (7.23), (7.24) is aal¢ atN = 2i — 3 wherei is the number of pre-
vious iterations. Auxiliary matriceM, , ,, M, _,, ..., M_,_, have dimensions

(2N -12)x (i —1). Auxiliary matrix, prepared to get a solution ¢we next iteratiori : My,
M,y ..., My_,, are obtained by increasing the dimensions ottheesponding matrices at
the current iteration,— wntil (2N +1)><i , by adding zeros on the positions that appearedalu
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the expansion of all the matrices, except thedaktmn. In this case, the principal minor of the
new matrices are the same matrix in the currerdtitsn. The last column of the new matrix is

obtained from the previous column by the shifeitsments four rows down. The top four posi-
tions of the last column of the new matrix are qued by zeros. The matrid  , has the same

dimension as the extended matrix. It is filled watros except his last column. Positions of the
first and the last element in the last column is thatrix are filled by units. Internal positions o

elements of this column are filled by quartetsltdraate numbers: 1, 0, -1, 0. The dimension of
the auxiliary vector/, ,_,, Va_,, - Vyy n_, ON i -th iteration is(i —1)x1. Let these vectors are

known and have the following form:
Viyo =|En Eis Eis Eir oo Einol;
Vino=|0 Ess Ess Esp oo Egyll;
Vino=[0 0 Egy Egp oo Esyioli oo
Vyono =10 0 0 0 .. Eypyol-

Then the auxiliary vectors solving the problem loait-th iteration appear as:
Vin :|.V1,N—2 El,N];
Vaow =Manz Eanl;
Vs :|_V5,N—2 ES,NJ;
Vi-ow =Mazn-e Encanl;
Vin =0 0 .. 0 ... Egul,

where the last element of the vecty, is calculated by the formula

— QZN—1Q2NQZN+1C“‘2N—1Q‘2Na‘ZN+1

= i ’

and the remaining unknown elements of the vedpysare calculated with increment two by

the indexj: | = 1..(N —1)/2. The last components of the vectors are given by

2
ﬂ - /'I =(j+

Eion =Ejn ! Nl l)’

Bu-(iv))  Hu-
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1
Whereﬂn = |_| QZn—ia&n—i :

i=-1

For example, ifj =1, then the last expression reads

2
E3N :( ﬁN—l j QZN—SQZN—4Q2NQ2N+1Q)ZN—50')ZN—4%N%N+l ]
ﬂN—ZﬂN QZN—Z%N—Z

Let j be two, then

2
E5 N :( ﬁN—l j QZN—QQZN—BQZN—4QZNQZN+1%N—9a)ZN—8%N—5%N—4a)ZN%N+1 .
' ﬂN—ZﬂN QZN—GQZN—Za)ZN—Sa)ZN—Z

(N-2)/2

z (_1)i+lM2i+1,NVz+lN gives a

i=1

Thevector[Q1 a’l4a Quasld .. (22N+1a)2N+1a§N+1/4]T

solution to the problem for arbitrary valié. Obviously, the induction basis is presented ley th
steps 1 and 2, the step numbes inductive, while the step 3 is shown for tHestration of cal-

culation only.

Point out that this algorithm for finding the statary solution represents a standard procedure

for calculating the nonelementary functions.

It is important to note that for any even numbenailinearly interacting triads the stationary
solutions are absent. This impacts the fact thaptiase synchronization, which leads to station-
ary regimes of oscillation is possible only for 8ystems consisting an odd number of triads

only.
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