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Abstract- A  mathematical  model  describing  dynamical  patterns 
which probably may give start to a geyser eruption is analyzed. 
This  appears  as  a  simple  oscillatory  cavity  resonator  governed 
sensitively  by  small  changes  in  the  temperature-dependent 
viscosity  of  subsoil.  Some  typical  patterns  of  the  thermo-
mechanical instability are traced parametrically in detail.
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I. INTRODUCTION

The  nature  exhibits,  on  the  one  hand,  that  active  geyser 
eruptions include at lot of appropriate circumstances while on 
the other hand, the dynamics may be quite silent even under 
almost  the  same  environment  conditions.  These  dynamical 
processes  traditionally  require  some theoretical  explanations. 
The present paper is one of many attempts along this way [1–
7]. From a physical viewpoint, it is obvious that the activity of 
geyser always causes a decrease in the viscosity of the subsoil 
fluid.  Then  the  amplitude  of  thermo-mechanical  oscillations 
should increase.  Equations governing the motion of  a  cavity 
resonator, provided by a sufficiently large coefficient of energy 
dissipation,  are  proposed to  play a role of  the  mathematical 
model in initial stages of the geyser dynamics.  It  is assumed 
that  the  coefficient  of  energy  dissipation  depends  upon  the 
ambient  temperature  and  simple  temperature  dependence 
between the energy dissipation and the temperature is selected 
as a linear function with a small slope, which enters both into 
the  heat  balance  equation  and  that  describing  mechanical 
vibrations.  These  equations are  investigated  using the small-
parameter  method  under  the  assumption  that  the  external 
excitation from side of subsoil is so small that it cannot cause 
significant  large-amplitude non-linear  oscillations.  The study 
of  steady-state  oscillatory  modes  reveals  dynamic  processes 
treated  as  dangerous  from a  viewpoint  of  the  beginning  the 
geyser  eruption.  These  are  explicable  in  terms  of  thermo-
mechanical instability of the nonlinear system in the vicinity of 
resonance.

A physical  picture of  dynamic  processes  in  almost  active 
geysers seams to be very simple. A drop in the viscosity leads 
to some increase of the amplitude, which contributes to some 
additional heat portion. This heat causes some decrease in the 
viscosity,  so that  the  heat  injection  should be  reduced.  It  is 
clear  that  such  a  process  should  be  saturated  and  would 
approach  some stationary  state.  However,  the  system  under 
consideration,  being  nonlinear,  has  hysteretic  steady-state 
regimes  of  motion,  which  can  lead  to  dangerous  oscillation 
regimes even being far  from the resonant frequency.  Such a 
situation is modelled along the specific examples following the 
parametric analysis performed to identify the most interesting 
oscillatory patterns.

Problems of the thermo-mechanical stability are of interest 
for physicists both on many traditional  and novel areas.  For 
example,  the  problems  of  ultrasonic  techniques  [8],  phase 
transitions in austenite, the dynamics of materials with memory 
[9], electromechanical  systems [10] cannot be traced without 
some adequate description between the thermal and mechanical 
effects.  Questions  of  the  thermo-mechanical  stability  in  the 
light of geyser eruptions have been methodically studied both 
within variety of purely descriptive models and methodically, 
using exact thermo-dynamical approaches [1–7, 11–15]. Most 
theoretical  models  are  restricted  to  a  “Pyrex  flask”  that  is 
heated by a burner. There are no objections to these scenarios. 
But, such models cannot explain, for instance, correlations in 
periodicity of the geyser activity. This paper tries to generalize 
the physical  description by including the mechanical  motion 
into the model,  since the “Pyrex  flask” may be treated  as  a 
damped  cavity  resonator.  The  dynamical  response  of  this 
resonator  depends  highly  sensitively  upon  extremely  small 
variations in subsoil viscosity. The model is so simple that can 
represent  just  a  possible  additional  fragment  to  generalise 
serious models describing geyser eruptions. 

II. EQUATIONS OF MOTION

The influence  of  temperature  effects  upon the  amplitude-
frequency  dependence  describing  steady-state  oscillations  is 
investigated.  The equations of motion are based on the most 
basic general  physical  assumptions,  briefly mentioned in the 
introduction: 
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where  the  reduced  coefficients  of  the  model  of  a  geyser 
activities are following: m  is the mass of the cavity resonator, 
c  is the coefficient of elasticity;  α  is the thermal coefficient 
of  viscosity;  β  is  the  coefficient  of  elasticity,  which 
characterizes the asymmetry of the deformation;  V stands for 
the volume of the cavity; P  denotes the static load of subsoil; 
p  is the maximal value of the external harmonic force at the 

given frequency ω ; µ  is some small dimensionless parameter 
modelling the rate of seismic activity. These equations, making 
allowances for the thermal balance, are also characterized by 
the following parameters:  C  is  the heat  capacity;  G  is  the 
thermal  conductivity;  ( )tx  denotes  the  mechanical 



displacement;  ( )tT  stands  for  the  temperature;  0θ  is  the 
ambient temperature; Q  is the external heat power. 

We define the static deformation under the static load  P ; 
ββ cPcc 2/42 −+−=∆  and  the  natural  frequency  of 

oscillation,  ( ) mPc /42 βϖ −= ,  in  the  absence  of  energy 

dissipation.  Then  the  following  dimensionless  variables  are 
introduced:
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Here  3 Vl =  is the characteristic length scale;  GQT /00 += θ  
is  the  equilibrium  temperature.  The  equations  of  motion  in 
these dimensionless variables can be rewritten as: 
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Upper  dots  denote  a  differentiation  with  respect  to  the 
dimensionless time τ .

The general solution to the linear subset (1), as 0→µ , can 
be obtained by any student of the second year of study. This 
solution is characterized three integration constants, say:  A  is 
an arbitrary complex constant ( A  corresponds to the complex 
conjugate amplitude of the cavity resonator) while B  is a real 
arbitrary constant, respective for the temperature. 

Finally,  we introduce the resonant frequency at which the 
linear system reaches the amplitude peak at the same frequency 
of the external excitation; ( )( ) mTm /1

2/12
0

222 αδϖ −−=Ω .

III. EQUATIONS EVOLUTION EQUATIONS

To  construct  the  first-order  nonlinear  approximation 
asymptotic  solution as  series  in  the small  parameter  µ ,  the 
paradigm of the method of arbitrary constant variations, known 
from courses of differential  equations,  is used. Formally,  the 
same form of solutions, which satisfy the linear homogeneous 
subset, is explored:
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All  the  formerly  “old”  constants,  ( )τAA = ,  ( )τAA = , 
( )τBB = , are now varying at the time τ ; the functions ( )τju , 

( )τjv ,  ( )τjw  represent the so-called nonresonant corrections (
1,0=j ).  The  order  of  approximations  is  determined  by  the 

index j . This one should be fully compatible with a standard 
expansion  of  the  sought  function  as  a  series  in  µ .  The 
nonresonant  corrections  are  introduced  to  develop  an 
asymptotic solution utilising an appropriate recursive method, 
due to the smallness of the parameter µ .

The following polar coordinates, ( )τa  and ( )τϕ , describing 
the amplitude and phase, correspondingly, are introduced: 
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This  transform  allows  us  to  trace  the  so-called  “fast”  and 
“slow” motions near the resonance provided that the external 
excitation  of  the  system (1)  is  small.  The  “fast”  variable  is 
characterized by the frequency of the external harmonic force 
ω , while the new phase ( ) ( ) ( ) ϖτωτϕτψ /Ω−−=  plays as the 
“slow” variable. The difference  Ω−ω  is associated with the 
phase-matching condition. This means that  ( )τψ  should be a 
small value of order µ .

A. First-order nonlinear approximation equations 
The average value of a given function ( )τf  over the period 

ωπ ϖ /2  is determined by the following expression

(4) τ
π ϖ
ω ω

π ϖ
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2
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. 

The averaging is performed over the “slow” variables when 
the resonance is removed from the system. After substituting 
(2) and (3) into eqs.(1), the averaging operator (4) leads to the 
following zero-order approximation evolution equations
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Stationary solutions to the set (5) are obtained by equating 
all the derivatives to zero: 
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Here 0a ,  0ψ ,  0B  denote the steady-state values of the sought 
variables.  Equations describing the zero-order corrections are 
following
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After  finding  any  particular  solution  to  eqs.(7),  the  zero-
order approximation is completely built. It is obvious that the 
zero-order  approximation stationary solution, in terms of  the 
substitution  (2),  coincides  exactly  with  the  corresponding 
solution to the original linear subset (1). 

To  construct  the  nonlinear  first-order  approximation 
evolution equations,  we can  again  use the  same substitution 
(2), pointing out that the zero-order non-resonant correction is 
already  are  known  as  a  particular  solution  to  the 
inhomogeneous linear differential equations (7). 

The  evolution  equations  within  the  first-order  non-linear 
approximation hold true: 
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The expressions for the coefficients to eqs.(8) are so long, 
but these are written exactly in [16]. 

The  structure  of  the  first-order  approximation  evolution 
equations (8) is very transparent. It is obvious that the intensity 
of  the  thermo-mechanical  effect  is  determined  by  the  small 
parameter  µ .  If  this parameter  is zero,  then there is no any 
temperature effect on the mechanical motion. If we assume the 
thermal viscosity parameter α  to be zero, then the coefficients 

10γ ,  11γ ,  12γ  and  20γ ,  21γ ,  22γ  should be  also zeros  in  the 
equations for the amplitude  a  and phase  ψ . There is no any 
temperature  effect  on  the  mechanical  motion  again.  Let  us 
remove  these  limiting  cases  from  consideration  and  the 
nontrivial  nonlinear  thermo-mechanical  coupling  becomes 
apparent.

B. Phase-amplitude frequency response with thermal effects
The  equations  determining  the  steady-state  oscillatory 

modes follow directly from the evolution equations (8) if we 
put all the velocities equal to zero. As a result one obtains the 
set of three transcendental  equations for the same number of 
unknowns variables a , ψ  and B


: 
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The unknown quantities,  a ,  ψ  and  B


, characterizing the 
amplitude,  phase  and  the  temperature,  respectively,  can  be 
parameterized in different ways. Let these be the functions of 
the external  frequency  ω .  Then one can build the so-called 
amplitude-phase  frequency  curves,  taking  into  account 
temperature effects. For clarity,  we may consider the specific 
values  of  individual  parameters  to  the  system  (1)  for  some 
specific  volume  of  active  geyser  subsoil.  Let  the  values  of 



these  hypothetic  parameters  be:  3610 mV −= ;  kgm 0.1= ; 
1510 −= Nmc ;  1400 −= smNδ ;  NP 310= ;  Np 100= ; 

1310 −−= Kα ;  10.1 −= mβ ;  31210 −−= mWKG ;  KT 3800 = ; 
ml 0.01= . Then there is the possibility to trace the behaviour 

of  the  amplitude  and  phase  characteristics  of  the  stationary 
processes depending upon the small parameter µ . The steady-
state characteristics, when the parameter is small enough, e.g. 

210−=µ , are shown in Fig. 1. The frequency in all the pictures 
is normalized by the value  Hz 133=ϖ , so that the maximal 
amplitude  should  be  near  unity.  The  amplitude,  ( )νa ,  and 
temperature,  ( )νB


,  are  presented  as  functions  of  the 

dimensionless frequency ϖων /= .
It is obvious that the set of stationary states is composed of 

two distinct subsets, namely H and L, which are appropriate to 
call the high- and low-temperature branches, respectively. The 
amplitude-  and  phase-frequency  branches,  characterizing  the 
low-temperature  subset  L,  are  almost  indistinguishable  from 
the related curves (6), characterizing the linear subsystem (Fig. 
2).  At the same time the high-temperature  subset  H appears 
entirely due to the nonlinearity.  This subset  consists of both 
stable and unstable fixed points separated by limits where the 
derivatives  become  infinite.  Obviously,  the  stable  stationary 
regimes H cannot be reachable from any initial conditions. For 
example,  to  excite  any  stable  high-temperature  stationary 
regime the liquid inside the geyser should be unnaturally pre-
heated up to some predetermined temperature.  Moreover,  the 
frequency of the external harmonic signal should be within the 
specified  band.  At  the  same  time  the  stationary  regimes 
correspondent  to  the  low-temperature  subset  L are  achieved 
almost at any initial conditions. 

Obviously,  that  the  temperature  related  to  the  high-
temperature branch  H should be most sensitive to changes in 
the small parameter  µ . The amplitude varies slowly than the 
temperature,  but the resonant peak is shifted slightly into the 
high-frequency band. In turn,  the high-temperature branch  H 
changes very rapidly with the growth of the small parameter. 
Starting with a certain critical value of this parameter, the high-
temperature  characteristic  H is  united  totally  with  the  low-
temperature  branch  L.  This  causes  the  thermo-mechanical  
instability of the system, which is expressed in a high jump in 
the  oscillation  amplitude  and  a  significant  increase  of  the 
temperature,  both in  the  vicinity  of  the resonance  frequency 
and even some higher. Figure 3 illustrates the stationary states 
near the critical point. The path (a, b, c, d, e, a) in this figure 
represents the hysteresis loop when the external frequency ω  
is scanned to and fro. 

The system under consideration (8)  is  complex enough to 
evaluate  analytically  their  stability  properties.  Nonetheless, 
numerical tests over the set (1) can confirm oscillatory patterns 
naturally observed in systems with a hysteresis.

Let  the small parameter  µ  increases.  How significant are 
the  changes  over  the  amplitude  and  temperature 
characteristics?  The figure  2  exhibits  a  significant  nonlinear 
dependence  even  within  the  low-temperature  steady-state 
solutions upon a relatively small variations in the parameter µ
. Point out that the high-temperature branch is not shown in this 
figure. 

Moreover, we should not forget that Fig. 3 demonstrates the 
results  provided  by  the  first-order  approximation  nonlinear 

model (8), though, direct numerical calculations of the original 
equations of motion (1) in some characteristic points confirm 
that the thermo-mechanical  instability actually takes place.  It 
turns  out  that  the  solution  to  the  first-order  nonlinear 
approximation equations (8) practically coincides with those of 
the initial problem (1) at small amplitudes in the vicinity of the 
resonant frequency. Some discrepancies between the exact and 
approximate solutions naturally increase with the growth of the 
external periodic load. It means that the second-order nonlinear 
approximation equations play an actual role from the viewpoint 
of  a  more  detailed  description  of  the  frequency-amplitude 
dependences.  But  this  question,  being  a  nontrivial  one,  is 
beyond the scope of present study.
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Fig. 1  Amplitude (a) and temperature (b) as functions of the dimensionless 

frequency ν . 

IV. PARAMETRIC ANALYSIS OF STATIONARY SOLUTIONS

To carry out a parametric analysis of stationary solutions to 
the  nonlinear  evolution  equations  of  the  first-order 
approximation,  the  left-hand side  of  eqs.(8)  are  indicated  as 

( )BaP
 ,,ψ ,  ( )BaQ

 ,,ψ  and  ( )BaR
 ,,ψ ,  correspondingly.  The 

unknown quantities,  a ,  ψ  and B


, describing, as before, the 
amplitude,  the  phase  and  temperature,  respectively,  are  now 
considered to be smooth functions of the small parameter µ . It 
is obvious that expression (9) represent explicit solutions to the 
eqs.(8)  with  the  initial  conditions  defined  by  the  known 



parameters, ( )0a ,  ( )0ψ  and ( )0B


. The functions P ,  Q  and 
R  are  differentiable  almost  everywhere  in  the  space  of  the 
system parameters. Then the parametric analysis of stationary 
solutions is available with the help of the Lie series [17, 18]. 
These functions should be once differentiated by the variable 
µ  in eqs.(9), then these obtained equations are resolved to the 
implicit set for the first derivatives. The result appears as the 
following three ordinary differential equations: 
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Fig. 2  Low-temperature branch L. Amplitude (a) and temperature (b). 

Numbers marked with different values of the small parameter.

Evidently,  the  initial  conditions  to  these  equations  are 
completely determined by the right-hand sides of steady states 
(6), i.e. ( ) 00 aa =

,  ( ) 00 ψψ =
 and ( ) 00 BB =


. The structure of 

these equations is not so easy, but it can be effectively studied 
in detail using parsing algorithms [16]. 

V. DEPENDENCE OF STEADY-STATE SOLUTIONS UPON THE SMALL 
PARAMETER µ

The numerical result to eqs.(10) is shown in Fig. 4, as an 
illustrative example. The values of the system parameters are 
the same as previously. 

Peaks of the displacement and temperature are formed even 
away from the resonant frequency Ω , as we can see in Fig. 4. 
A typical resonant pattern takes place when the frequency of 
the external signal, ω , tends to the resonant frequency of the 
system Ω . 

C. Steady-states versus the nonlinear elastic parameter β

The steady states  obtained by scanning the parameter β , 
characterizing the asymmetry of the elastic characteristics are 
shown in  Fig. 5.  There  is  no  any  significant  impact  on  the 
dynamics of the geyser dynamics even with a very significant 
change in this parameter. 

0.028 0.027

0 2 4 6 8 10

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,10

a

b
c

d

e

a

0.028 0.026

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

a

b

c

d

e

H

L

b
Fig. 3  Thermo-mechanical instability. Amplitude response (a) and temperature 

(b) versus the dimensionless frequency ν . Numbers marked with different 
values of the small parameter.
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Fig. 4  Stationary solutions. Amplitude (a), phase (b) and temperature (c) 

versus the small parameter µ . Numbers marked with the calculated values of 
the external signal frequency in Hertz. 
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Fig. 5  Stationary states. Amplitude (a), phase (b) and temperature (c) versus 
the small parameter µ . Numbers are marked with the calculated values for 

the nonlinear elasticity (units m/1 ).

D. Steady-states versus the static load P  
The steady states along the variable parameter of the static 

load  P , characterizing a constant  component  of  the subsoil 
pressure, are illustrated in Fig. 6. It is clearly that the static load 
influences significantly on the geyser dynamics. 
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Fig. 6  Stationary states. Amplitude (a) and temperature (b) versus the small 
parameter. Numbers are marked with the calculated values of the static load 

(units Newton). 

VI. CONCLUSIONS

A mathematical model describing initial stages of the geyser 
thermo-mechanical  instability  has  been  traced  in  this  paper. 
This instability is caused by the nonlinear resonant phenomena. 
The temperature of the fluid inside the geyser cavity, which is 
regarded  as  a damped mechanical  resonator,  increases  under 
extremely  small  external  harmonic  excitation,  so  that,  the 
viscosity  decreases  while  the  amplitude  of  mechanical 
vibrations increases, as well. This decrease in viscosity causes 
some  restriction  in  the  heat  injection.  This  leads  to  the 
nonlinear  steady  states. In  the  vicinity  of  the  resonant 
frequency,  the  system exhibits  a  strong amplitude-frequency 
dependence,  which  provides  some  hysteretic  patterns  of 
oscillations. Parametric analysis of the system reveals that the 
value of thermal viscosity is the most sensitive parameter from 
the  viewpoint  of  the  thermo-mechanical  instability. It  is 
demonstrated that this parameter approaches a critical value at 
extremely  small  variations  in  the  system. In  practice,  this 
means  that  some even  small  impurities,  such as  particles  of 
rocks or  salt  concentration,  can  critically influence  upon the 
geyser  dynamics.  Possibly,  this  can  help  to  explain  some 
evident periodicity in eruptions observed in the nature.
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