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Abstract  

In this paper we present the results of theoretical studies inspired by the problem to reduce vibrations 

and noise using hydraulic absorbers as a damper to dissipate the energy of vibrations in the railway 

electric equipment of the track ВЛ-8ОC. The results of initial experimental studies on reducing the 

energy consumption of induction rotors, and some theoretical calculations demonstrated in this paper 

show the ability to customize the damping properties of hydraulic absorbers saving a power and saving 

the equipment due to a self-locking mode of rotation of rotors. 

 

Introduction 

The phenomenon of the phase synchronization, being first physically described by Huygens, begins 

intensively studied mathematically only since the mid 20-th century, in parallel with significant 

advances in electronics [1-4]. Fundamental results on the synchronization in terms of the qualitative 

theory of differential equations and bifurcation theory [5] prove the resonance nature of this 

phenomenon. Now the application of this theory is widely used to solve pressing practical problems in 

a wide range of activities, from microelectronics to power supply [6-8]. Now the interests of 

researchers in advanced fields of synchronization theory concentrated, apparently due to the rapid 

development of new technologies, for studying complex systems with chaotic dynamics, discrete 

objects and systems with time delay variables. However, in the traditional areas of human activity such 

as, for instance, energy and transport, is also noticeable growth of interest in this phenomenon, in order 

to find effective ways to save energy and integrity of the power units. The progressive development of 

science is constantly improving and expanding our understanding of the phenomenon of 

synchronization, as a consistent coherent dynamic process. It occurs usually due to very small, almost 

imperceptible bonds between the individual elements of the system, which, nevertheless, a qualitative 

change in the dynamical behavior of the object. 

 The basic equation of the theory of phase synchronization of a pair of oscillators (rotator) reads  

 Ψ+=
Ψ

sinQ
dT
d δ ,  

where δ  is a small frequency (or angular velocity) detuning, Q  is the depth of the phase modulation, 

T  is the time. This one being a very simple equation has the general solution in the following form  
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where C  is an arbitrary constant of integration, T  - is the temporal scale. From this solution follows a 

simple stability criterion for the phase synchronization:  

 

022 <−Qδ .  

 

It shows that the phase mismatch must be small, or, accordingly, the parameter of modulation must be 

sufficiently large, otherwise the synchronization may be destroyed.  

 A more detailed mathematical study of the classical problem of the stable synchronization in a 

two-rotor system based on an elastic foundation turns out that the reduced model is incomplete. 

Namely, it draws attention to itself by the fact that the model lacks any description of the element of 

the system by which proper and carried out the interaction of the rotors. It turned out that the structure 

of the refined model is  

 

( )ρρ
DS

dT
d

−= , 2sin ρδ RQ
dT
d

+Ψ+=
Ψ ,  

 

where ρ  describes a measure of the amplitude of oscillations of the elastic foundation. This additional 

equation appears as a result of the phase modulation of the angular frequency of rotors due to 

vibrations of the base. So that, the perturbed rotors, in turn, cause the resonant excitation of vibrations 

of the base, described by the second equation. In the study of the refined model explains that for the 

stable synchronization requires the addition condition, 022 <−Qδ . One more necessary condition is 

that the coefficient of the resonant excitation of vibrations of the base S  should not exceed the rate of 

energy dissipation D , i.e. DS < . The last restriction significantly alters the stability region of the 

synchronization in the parameter space of the system that, in fact, will be demonstrated by specific 

computational examples.  

 

The equations of motion 

We consider the motion of two electric asynchronous engines mounted on an elastic platform. A 

mathematical model is presented by the following system of differential equations [6-8]  

 



 ( ) ( ) 0cossincossin 2
2

222221
2

11111 =+−+−+ ϕϕϕϕϕϕϕϕηη &&&&&&&& rmrmpm ; 

 

(1) ( ) ( ) 0sin,, 11111111111 =−−+ ϕηϕϕϕϕϕ &&&&&& rmLHI ; 

 

 ( ) ( ) 0sin,, 22222222222 =−−+ ϕηϕϕϕϕϕ &&&&&& rmLHI , 

where m  is the mass of the platform, modeled as a rigid body with one degree of freedom, 

characterized by a linear horizontal displacement η , p  is the coefficient of elasticity of the platform 

associated with a fixed base (ground), im  are the small masses of eccentrics with the eccentricities ir  

(the radiuses of inertia), iI  - are the moments of inertia of rotors in the absence of imbalance, ( )ϕϕ &,iL  

stands for the driving moments, ( )ϕϕ &,iH  denotes the resistance moment of the rotor. It is installed a 

pair of the asynchronous engines (unbalanced rotors) on the platform, whose axis is perpendicular to 

the direction of oscillation. The angles of rotation of the rotor iϕ  measured from the direction of the 

axis η  counter-clockwise. Assume that the moment characteristics of each engine and torque 

resistance have a simple linearised form, i.e. ( ) iiiiii kML ϕϕϕ && −=, , ( ) iiiii kH ϕϕϕ && 0, = . Here iM  are the 

constant parameters, respective for the starting points, ik0  and ik stand for the drag coefficients of the 

devices. Respectively, the subscript “1” refers to the first device, while “2” to the second. If one 

assumes a simple linear model of the moment of static characteristics of the devices, the dimensionless 

form of equation (1) can be rewritten as follows: 
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2

22221
2

1111 =+−+−+ ϕϕϕϕµκϕϕϕϕµκ &&&&&&&& xx ; 

 

(2) 0sin 1111111 =−−+ ϕµκϕϕ xcba &&&&& ; 

 

 0sin 2222222 =−−+ ϕµκϕϕ xcba &&&&& , 

where 1<<µ  appears as the-small parameter of the problem. The parameters 1κ  и 2κ  are of order of 

unity such that 11 µκµ =  and 22 µκµ = , where ( )21111 2 mmMrm +=µ  and ( )21222 2 mmMrm +=µ . 

We have introduced new notations: 
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)( 21 +=  ( 2,1=i ). Here 

mp /0 =ω  is the oscillation frequency of the platform in the absence of the engines, ( )212 rrx += η  

is the new dimensionless linear coordinate measured in fractions of the radius of inertia of the 

eccentrics. The set (2), in contrast to the original equations, depends now on the dimensionless 

time t0ωτ = . 



 The problem (2) admits an effective study by the method of a small parameter. In order to 

explore this method, one should transform the system (2) to a standard form of the six equations 

resolved for the first derivatives. The intermediate steps of this procedure are as follows: 

• introducing new variables y , 1ϖ , 2ϖ  associated with the initial dependent variables by 

differential relations  

 y
d
dx

=
τ

, 1
1 ϖ
τ
ϕ

=
d
d

, 2
2 ϖ
τ
ϕ

=
d
d

, 

assuming that 0=µ  in the set (2), one defines the transform to the new dependent variables based on 

the method of varied constants: ( ) ( )ταττϕ += , ( ) ( ) ( )ττντϖ 111 exp a−= , ( ) ( ) ( )ττντϖ 222 exp a−= , 

( ) ( )τβττϕ 111 +Ω= , ( ) ( )τβττϕ 222 +Ω= , where ( ) ( ) ( )( )τϕτρτ sin=x , ( ) ( ) ( )( )τϕτρτ cos=y , 1Ω  and 

2Ω  are the partial angular velocities of devices. Here ( )τρ , ( )τα , ( )τν 1 , ( )τν 2 , ( )τβ1 , ( )τβ 2  are the 

six new variables of the problem. The notations of these new variables are the following: ( )τρ , ( )τα  

is the amplitude and phase of oscillations of the base, respectively, ( )t1ν , ( )t2ν  are the angular 

accelerations and ( )τβ1 , ( )τβ 2  are the angular velocities of the rotors,  

• the standard form suitable for further analysis corresponding to eqs.(2) is ready.  

 Because of the large record length of a standard form in itself is not given, but the interested 

reader can follow in detail the stages of its derivation in the algorithmic package Maple 12 on the site 

[9]. 

 Solution of the system in a standard form is solved as series in the small parameter µ : 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ...,..., 221
21 +++= τρµτµρρτρ TT ; ( ) ( ) ( ) ( ) ( ) ( ) ...,..., 221

21 +++= ταµτµαατα TT ;  

 

(3) ( ) ( ) ( ) ( ) ( ) ( ) ...,..., 2
1

21
12111 +++= τνµτµνντν TT ; ( ) ( ) ( ) ( ) ( ) ( ) ...,..., 2

2
21

22122 +++= τνµτµνντν TT ;  

 

 ( ) ( ) ( ) ( ) ( ) ( ) ...,..., 2
1

21
12111 +++= τβµτµββτβ TT ;  

 

 ( ) ( ) ( ) ( ) ( ) ( ) ...,..., 2
2

21
22122 +++= τβµτµββτβ TT . 

 

Here, the kernel expansion depends upon the slow temporal scales τµ n
nT = , which characterize the 

evolution of resonant processes. The variables with superscripts denote small rapidly oscillating 

correction to the basic evolutionary solution.  



 Then it is necessary to identify the resonant conditions in the standard form. The resonance in 

the system (2) occurs within the first-order nonlinear approximation theory, when 1~1Ω  and when 

1~2Ω  or if the both parameters are close to unity, 1~~ 12 ΩΩ . All these cases require a separate 

study. Now we are interested in the phenomenon of the phase synchronization in the system (2). This 

case, in particular, is realized when 12 ~ ΩΩ , though the both partial angular velocities should be 

sufficiently far from unity and less than unity, in order to overcome the instability predicted by the 

Sommefeld effect, since the first-order approximation resonance is in absent the system (2) in this 

case. Resonance is manifested in the second approximation.  

 In addition to the resonance associated with the standard phase synchronization in the system 

(2) there is one more resonance, when 0~2 21 Ω−Ω− , which apparently has no practical 

significance, since its angular velocities fall in the zone of instability, according to the Sommerfeld 

effect [].  

 Note that other resonances in the system (2) are absent within the second-order nonlinear 

approximation theory. The next section investigates these cases are in detail.  

 

The synchronization. The matching condition 1~ 12 ≠ΩΩ . 

After the substitution the expressions (3) into the standard form of equations and the separation of fast 

and slow motions within the first order approximation theory in small parameter µ  one obtains the 

following information about the solution of the system. In the first approximation theory, the slow 

steady-state motions (when ∞→t ) are the same as in the linearised solution: 

 

 const=A , const=α ; const1 =ν , const2 =ν ; const1 =B ; const2 =B . 

 

This means that the slowly varying generalized coordinates ρ , α , 1ν  and 2ν , 1β  and 2β  do not 

depend in the first approximation of any of the physical time τ  nor the slow time 1T .  

Solutions for the small non-resonant corrections appear as follows:  
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This solution (4) describes a small perturbed motion of the base with the same frequencies as 

the angular velocities of rotation of drivers, which is manifested in the appearance of combination 

frequencies in the expression for the corrections to the amplitude ( ) ( )τρ 1  and the phase ( ) ( )t1α . 

Amendments to the angular accelerations ( ) ( )t1
1ϖ , ( )( )t1

2ϖ  and the velocities ( ) ( )τβ 1
1 , ( ) ( )τβ 1

2  also contain 

the similar small-amplitude combination harmonics at the difference and sum.  

Now the solution of the first-order approximation is constructed. This decision has not suitable 

for describing the synchronization effect and call to continue further manipulations with the equations 

along the small-parameter method. Using the solution (4), after the substitution in eqs.(3), one obtains 

the desired equation of the second-order nonlinear approximation, describing the synchronization 

phenomenon of a pair of drivers on an elastic foundation.  

So that, after the second substitution of the modified representation (3) in the standard form and 

the separation of motions into slow and fast ones, one obtains the following evolution equations.  

 

 ( ) ( )
ρ

ρρ Ψ
Ω−Ω−−=

sin
21

2

PDS
dT
d

 

(5) 

 2

2

sin ρδ RQ
dT
d

+Ψ+=
Ψ

,  

 

where ( ) ( ) ( )
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=  denotes the small detuning of the partial angular velocities. The coefficients of equations 

(5) appear as follows: 
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Let the detuning be zero, then these equations are highly simplified up to the full their separation:  

 

 ( )ρρ
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(6) 
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+Ψ=
Ψ

.  

Equations (5) (5) represent a generalization of the standard basic equations of the theory of phase 

synchronization [10], whose structure reads as follows  
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Formally, this equation follows from the generalized model (5) or (6), if we put 0=ρ . The equation 

(7) has the general solution 
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where C  is an arbitrary constant of integration. This solution implies the criterion of the stable phase 

synchronization:  

 

(8) 022 <−∆ Q ,  

 



which indicates that the occurrence of the stable synchronization the phase detuning must be small 

enough, compared with the phase modulation parameter. If this condition is not observed, then the 

system leaves the zone of synchronization. 

 On the other hand the refined model (6) says that for the stable synchronization the 

performance of the above conditions (8) is not enough. It is also necessary condition that the 

coefficient of the resonant excitation of vibrations in the base S  should not exceed the rate of energy 

dissipationD , i.e. DS < . The last restriction significantly alters the stability zone of synchronization 

in the parameter space of the system that, in fact, is demonstrated below on the specific computational 

examples.  

 

Examples of stable and unstable regimes of synchronization 

The table below shows the calculation of the different theoretical implementations of stable and 

unstable regimes of the phase synchronization. The example 1 (see the first line in the table) 

demonstrates is a robust synchronization with a small mismatch between the angular velocities of 

drivers, i.e. 1.0=δ . The example 2 (see, respectively, the second line in the table, etc.) displays an 

unstable phase-synchronization regime at the small difference between the angular velocities, i.e. 

1.0=δ . Reach a steady state of synchronization in this example by adding a damping element with 

damping coefficient 0.009≥η . The example number 3. This is the robust synchronization for the small 

differences in eccentrics ( 2.021 =−κκ ) and equal angular velocities. The example number 4. This is 

an unstable synchronization mode with the small differences in eccentrics ( 2.021 =−κκ ) and the 

small mismatch in angular velocities, i.e. 1.0=δ . One can reach a steady state of synchronization in 

this example by adding a dissipative element with the damping coefficient 0.009≥η . The example 

number 5. This is an unstable synchronization regime with the small differences in eccentrics. One 

cannot reach any stable synchronization regime in this example, it is impossible, even when adding 

any damping element. The example number 6. This is an unstable regime of synchronization at the 

different angular speeds. It is also impossible to achieve any sustainable sync mode in this case. 

 

 µ  
1c  2c  1κ  2κ  1a  2a  1Ω  2Ω  22 Q−∆  S  

1 0.1 1 1 0.5 0.5 1 1 0.751 0.75 -0.244 -0.204 

2 0.1 1 1 0.5 0.5 1 1 0.251 0.25 -0.072 0.008 

3 0.1 1 1 0.6 0.4 1 1 0.25 0.25 -0.075 -0.001 

4 0.1 1 1 0.6 0.4 1 1 0.251 0.25 -0.075 0.009 

5 0.1 1 1 0.6 0.4 1 1 1.25 1.25 0.239 -0.085 



6 0.1 1 1 0.5 0.5 1 1 0.26 0.25 0.998 -0.007 

 

Table. Parameters of stable and unstable regimes of synchronization. 

 

The matching condition 0~2 21 Ω−Ω− . 

After substitution from the expressions (3) into the standard form of equations (2), separation of fast 

and slow motions in the first-order approximation in the small parameter µ , under the assumption that 

0~2 21 Ω−Ω−  one obtains the following evolutionary equations  
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equations (9) are as follows: 
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The resonance of this type when 0~2 21 Ω−Ω− , as already mentioned, has no practical significance, 

since for its implementation the angular speed of one driver, say, for example, the second, i.e. 12 >Ω , 

should fall in the zone of instability, according to the Sommerfeld effect.  



 Let the detuning be zero, then these equations are highly simplified up to the full their 

separation:  

 

 ( )ρρ
DS

dT
d

−=
2

; 

(10) 

 2

2

ρRQ
dT
d

−=
Ψ

.  

 
The formal criterion of stability is extremely simple. Namely, the coefficient of the resonant excitation 

of vibrations in the base S  exceeds no the rate of energy dissipation, D , i.e. DS < . 

 

Conclusions 

Synchronous rotations of drivers are almost idle and required no a high-powered energy set in this case 

[11]. Most responsible treatment for the drivers is their start, i.e. a transition from the rest to a steady-

state rotation. Using some vibration absorbers for high-powered electromechanical systems has 

advantageous for the two main reasons. On the one hand it provides a tool for substantially mitigating 

the effects of transient shocking loads during the time of growth the acceleration of drivers. This 

contributes to preservations of the electromechanical system and save energy. On the other hand the 

there is an ability to configure the appropriate damping properties of vibration absorbers to create a 

stable regime of synchronization when it is profitable, or even get rid of him, to destroy the 

synchronous movement, creating conditions for a dynamic interchange drivers. 
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